分析 函數(shù)f(x)=x2+x-$\frac{1}{4}$的最小值為-$\frac{1}{2}$,當(dāng)f(x)=x2+x-$\frac{1}{4}$=$\frac{1}{16}$,解得:x=$\frac{1}{4}$,或x=-$\frac{5}{4}$,結(jié)合函數(shù)f(x)的定義域為[a,a+1],值域為[-$\frac{1}{2}$,$\frac{1}{16}$],可得答案.
解答 解:∵函數(shù)f(x)=x2+x-$\frac{1}{4}$=(x+$\frac{1}{2}$)2-$\frac{1}{2}$,
∴函數(shù)f(x)=x2+x-$\frac{1}{4}$的最小值為-$\frac{1}{2}$,
令f(x)=x2+x-$\frac{1}{4}$=$\frac{1}{16}$,
解得:x=$\frac{1}{4}$,或x=-$\frac{5}{4}$,
若函數(shù)f(x)的定義域為[a,a+1],值域為[-$\frac{1}{2}$,$\frac{1}{16}$],
則a=-$\frac{5}{4}$,或a+1=$\frac{1}{4}$,
∴a=-$\frac{5}{4}$,或a=-$\frac{3}{4}$
點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{5}$π | B. | 4π | C. | 2π+2$\sqrt{5}$π | D. | 5π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛 | 不喜愛 | 總計 | |
男學(xué)生 | 60 | 80 | |
女學(xué)生 | |||
總計 | 70 | 30 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com