【題目】判斷下列全稱量詞命題的真假:
(1)每一個末位是0的整數(shù)都是5的倍數(shù);
(2)線段垂直平分線上的點到這條線段兩個端點的距離相等;
(3)對任意負(fù)數(shù)的平方是正數(shù);
(4)梯形的對角線相等
【答案】(1)真命題;(2)真命題;(3)真命題;(4)假命題.
【解析】
(1)根據(jù)整數(shù)的知識判斷即可.
(2)根據(jù)平面幾何的知識判斷即可.
(3)根據(jù)平方的性質(zhì)判斷即可.
(4)舉出反例判斷即可.
(1)根據(jù)整數(shù)的性質(zhì),末位是0的整數(shù)都是5的倍數(shù)成立.故為真命題.
(2)根據(jù)垂直平分線的性質(zhì)可得線段垂直平分線上的點到這條線段兩個端點的距離相等.故為真命題.
(3)對任意負(fù)數(shù),不等式兩邊同時乘以負(fù)數(shù)
有
.故為真命題
(4)舉反例如直角梯形對角線顯然不相等.故為假命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),對m,n∈R,恒有f(m+n)=f(m)·f(n)(f(m)≠0,f(n)≠0),且當(dāng)x>0時,0<f(x)<1.
(1)求證f(0)=1;
(2)求證x∈R時,恒有f(x)>0;
(3)求證f(x)在R上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形中,
,
,
為
的中點,
為
中點.將
沿
折起到
,使得平面
平面
(如圖2).
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)在線段上是否存在點
,使得
平面
? 若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線
的兩條互相垂直的弦(點
在第二象限),且
交于點
,點
為
軸上一點,
,其中
為銳角
(1)設(shè)線段的長為
,將
表示為關(guān)于
的函數(shù)
(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,梯形中,
,
,
,
,
為
中點.將
沿
翻折到
的位置, 使
如圖2.
(1)求證:平面
平面
;
(2)求與平面
所成角的正弦值;
(3)設(shè)、
分別為
和
的中點,試比較三棱錐
和三棱錐
(圖中未畫出)的體積大小,并說明理由.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程是
(
為參數(shù)),曲線
的參數(shù)方程是
(
為參數(shù)).
(Ⅰ)將曲線,
的參數(shù)方程化為普通方程;
(Ⅱ)求曲線上的點到曲線
的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(e是自然對數(shù)的底數(shù)),對任意的
R,存在
,有
,則
的取值范圍為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com