5.函數(shù)f(x)=$\frac{1}{{\sqrt{1-x}}}$的定義域為M,函數(shù)g(x)=$\sqrt{1+x}$的定義域為N,則M∩N=( 。
A.[-1,1]B.[-1,∞)C.[-1,1)D.(-∞,1)

分析 先分別求出函數(shù)的定義域,再進行交集運算即可.

解答 解:∵M={x|1-x>0}={x|x<1}
N={x|x≥-1}
∴M∩N={x|-1≤x<1}
故選:C

點評 本題考查交集及其運算,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.某地交通管理部門從當?shù)伛{校學員中隨機抽取9名學員參加交通法規(guī)知識抽測,活動設(shè)有A、B、C三個等級,分別對應(yīng)5分,4分,3分,恰好各有3名學員進入三個級別,現(xiàn)從中隨機抽取n名學員(假設(shè)各人被抽取的可能性是均等的,1≤n≤9),再將抽取的學員的成績求和.
(I)當n=3時,記事件A={抽取的3人中恰有2人級別相同},求P(A);
(Ⅱ)當n=2時,若用ξ表示n個人的成績和,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知直線m:2x-y-3=0與直線n:x+y-3=0的交點為P.
(1)若直線l過點P,且點A(1,3)和點B(3,2)到直線l的距離相等,求直線l的方程;
(2)若直線l1過點P且與x,y正半軸交于A、B兩點,△ABO的面積為4,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(-1)}^n}sin\frac{πx}{2}+2n,\;x∈[{2n,2n+1})}\\{{{(-1)}^{n+1}}sin\frac{πx}{2}+2n+2,\;x∈[{2n+1,2n+2})}\end{array}}\right.$(n∈N),若數(shù)列{am}滿足${a_m}=f(m)\;(m∈{N^*})$,數(shù)列{am}的前m項和為Sm,則S105-S96=909.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)等差數(shù)列{an}的前n項和為Sn,且a1>0,a3+a10>0,a6a7<0,則滿足Sn>0的最大自然數(shù)n的值為( 。
A.6B.7C.12D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)y=f(x)對任意的x∈(0,π)滿足f′(x)sinx>f(x)cosx(其中f′(x)是函數(shù)f(x)的導函數(shù),則下列不等式錯誤的是(  )
A.$f(\frac{π}{6})<f(\frac{5}{6}π)$B.$\sqrt{3}f(\frac{π}{6})>f(\frac{π}{3})$C.$\sqrt{3}f(\frac{π}{2})>2f(\frac{π}{3})$D.$2f(\frac{π}{6})<f(\frac{π}{2})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{{a_n}-\sqrt{3}}}{{\sqrt{3}{a_n}+1}},n∈{N^*},則{a_{2016}}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某商人經(jīng)過多年的經(jīng)驗發(fā)現(xiàn)本店每個月售出的某種商品件數(shù)ξ是一個隨機變量,它的分布列為:P(ξ=i)=$\frac{1}{12}$(i=1,2,…,12);設(shè)每售出一件該商品,商人獲利500元.如銷售不出,則每件該商品每月需花保管費100元.問商人每月初購進多少件該商品才能使月平均收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.某新聞單位要進行一次“科技興國,實現(xiàn)中國夢”的采訪調(diào)查活動,確定采訪6名科技專家,其中專家A只能作為采訪的第一位或最后一位,專家B和專家C采訪時必須相鄰,請問這次采訪活動順序的編排方法共有96種.

查看答案和解析>>

同步練習冊答案