分析 (1)直接利用古典概型的概率計算方法求解即可.
(2)ξ的取值為0、1、2、3,求出對應的概率,得到分布列然后求解期望.
解答 解:(1)事件A“選派的三人中恰有2人會法語的概率為$P(A)=\frac{C_5^2C_2^1}{C_7^3}=\frac{4}{7}$;…(5分)
(2)ξ的取值為0、1、2、3,則$P(ξ=0)=\frac{C_4^3}{C_7^3}=\frac{4}{35}$,$P(ξ=1)=\frac{C_4^2C_3^1}{C_7^3}=\frac{18}{35}$,$P(ξ=2)=\frac{C_4^1C_3^2}{C_7^3}=\frac{12}{35}$,$P(ξ=3)=\frac{C_3^3}{C_7^3}=\frac{1}{35}$;
分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{4}{35}$ | $\frac{18}{35}$ | $\frac{12}{35}$ | $\frac{1}{35}$ |
點評 本題考查離散型隨機變量的分布列的應用,期望的求法,考查計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\frac{5π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈Z | B. | [-$\frac{3π}{8}$+2kπ,$\frac{π}{8}$+2kπ],k∈Z | ||
C. | [-$\frac{3π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z | D. | [-$\frac{5π}{8}$+kπ,$\frac{π}{8}$+kπ],k∈Z |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 不全相等 | B. | 均不相等 | ||
C. | 都相等且為$\frac{25}{1008}$ | D. | 都相等且為$\frac{1}{40}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{6}$ | B. | $\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{15}}{8}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 6$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 9$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<c<b | B. | b<a<c | C. | a<b<c | D. | b<c<a |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com