3.已知f(x)為偶函數(shù),且滿足f(x)=f(-x+2),方程f(x)=0在[0,1]內(nèi)有且只有一個根$\frac{1}{2016}$,則方程f(x)=0在區(qū)間[-2016,2016]內(nèi)的根的個數(shù)為( 。
A.4032B.4036C.2016D.2018

分析 根據(jù)函數(shù)奇偶性和對稱性的關(guān)系判斷函數(shù)的周期是2,結(jié)合函數(shù)與方程的關(guān)系進行求解即可.

解答 解:∵f(-x)=f(x),f(x)=f(-x+2)∴f(-x)=f(-x+2),
f(x)是周期為2 的周期函數(shù)且f(x)圖象關(guān)于直線x=1對稱,
又∵方程f(x)=0在[0,1]內(nèi)有且只有一個根$\frac{1}{2016}$,
∴方程f(x)=0在[1,2]內(nèi)有且只有一個根,
故方程f(x)=0在一個周期內(nèi)有兩個根,[-2016,2016]內(nèi)包括2016個周期,
共2016×2=4032個根.
故選:A.

點評 本題主要考查函數(shù)根的個數(shù)的判斷,根據(jù)條件判斷函數(shù)的周期是解決本題的關(guān)鍵.綜合考查函數(shù)的奇偶性,對稱性和周期性的性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=a+bcosx+csinx的圖象經(jīng)過(0,1),($\frac{π}{2}$,1)兩點.
(1)利用公式sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)將f(x)表示為Asin(ωx+φ)+B的形式,并求a=2時f(x)在[0,$\frac{π}{2}$]上的值域;
(2)若不等式|f(x)|≤2,在[0,$\frac{π}{2}$]上恒成立,求實數(shù)a的取值范圍;
(3)當(dāng)a>1時,若在[0,$\frac{π}{2}$]上存在x使不等式f(x+$\frac{π}{4}$)f(x-$\frac{π}{4}$)+a2-4a+2≥0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖為函數(shù)f(x)的圖象,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則不等式$\frac{f'(x)}{x}$<0的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),\;x>2.\end{array}$,則函數(shù)g(x)=xf(x)-6在區(qū)間[1,22015]內(nèi)的所有零點的和為$\frac{3}{2}$•(22015-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)的定義域為R,f(-2)=2,對任意x∈R,f′(x)>2,則f(x)>2x+6的解集為( 。
A.(-2,2)B.(-∞,-2)C.(-2,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=xe-x的單調(diào)遞減區(qū)間是( 。
A.(1,+∞)B.(-∞,-1)C.(-∞,1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x)的導(dǎo)數(shù)為f′(x),且恒有f(x)+f′(x)•tanx>0成立,則( 。
A.$\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$)B.$\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$)C.$\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$)D.f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f'(x)為f(x)的導(dǎo)函數(shù),當(dāng)x≠0時,x•f'(x)<0恒成立,對于正數(shù)a,b有:A=f($\frac{a+b}{2}$),B=f($\sqrt{ab}$),C=f($\frac{2ab}{a+b}$),則A、B、C的大小關(guān)系為( 。
A.A≤B≤CB.A≤C≤BC.B≤C≤AD.C≤B≤A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案