7.已知f(x)=|x-m|+2m.
(1)若不等式f(x)≤2的解集為單元素集,求實(shí)數(shù)m的值;
(2)在(1)的條件下,若存在x0∈R,使得f(x0)+f(-x0)≤a成立,求實(shí)數(shù)a的取值范圍.

分析 (1)先解不等式,再利用不等式f(x)≤2的解集為單元素集,求實(shí)數(shù)m的值;
(2)存在x0∈R,使得f(x0)+f(-x0)≤a成立,則|x0-1|+2+|-x0-1|+2≤a,即|x0-1|+|-x0-1|≤a-4,求出左邊的最小值,即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)由題意|x-m|≤2-2m,
∴3m-2≤x≤2-m,
∵不等式f(x)≤2的解集為單元素集,
∴3m-2=2-m,
∴m=1;
(2)f(x)=|x-1|+2,
存在x0∈R,使得f(x0)+f(-x0)≤a成立,則|x0-1|+2+|-x0-1|+2≤a,
∴|x0-1|+|-x0-1|≤a-4,
∵|x0-1|+|-x0-1|≥|x0-1-x0-1|=2,
∴a-4≥2,
∴a≥6.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式,考查學(xué)生分析解決問題的能力,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義:若曲線τ由橢圓T1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和橢圓T2:$\frac{{y}^{2}}{^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(b>c>0)組成,當(dāng)a、b、c成等比數(shù)列時(shí),稱曲線τ為“貓眼曲線”.若“貓眼曲線”τ過點(diǎn)P(0,-$\sqrt{2}$),且a、b、c的公比為$\frac{\sqrt{2}}{2}$.
(1)求“貓眼曲線”τ的方程;
(2)任作斜率為k(k≠0)且不過原點(diǎn)的直線與該曲線τ相交,且交橢圓T1所得弦的中點(diǎn)為M,交橢圓T2所得弦的中點(diǎn)為N,設(shè)OM、ON的斜率分別是kOM、kON,求$\frac{{k}_{OM}}{{k}_{ON}}$的值;
(3)若斜率為1的直線l交橢圓T1于點(diǎn)A、B,交橢圓T2于點(diǎn)C、D,且滿足$\frac{|AB|}{|CD|}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)$\overrightarrow{a}$、$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$、$\overrightarrow$夾角大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若過點(diǎn)A(2,-2)和點(diǎn)B(5,0)的直線與過點(diǎn)P(2m,1)和點(diǎn)Q(-1,-m)的直線平行,則m的值為( 。
A.-1B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=Asin(ωx+φ)的圖象相鄰的最高點(diǎn)和最低點(diǎn)的坐標(biāo)分別為($\frac{5π}{12}$,3),($\frac{11π}{12}$,-3),函數(shù)的解析式是f(x)=3sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線C1的參數(shù)方程是$\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立平面直角坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=-4cosθ.
(1)求曲線C1和C2交點(diǎn)的直角坐標(biāo);
(2)A、B兩點(diǎn)分別在曲線C1與C2上,當(dāng)|AB|最大時(shí),求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=x2+2(a+2)x+4lnx的圖象上是否存在兩點(diǎn)A(x1,y1)和B(x2,y2)使f′($\frac{{x}_{1}+{x}_{2}}{2}$)=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$成立?若存在,請(qǐng)求出x0的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,△ABC中,D為BC的中點(diǎn),G為AD的中點(diǎn),過點(diǎn)G任作一直線MN分別交AB、AC于M、N兩點(diǎn).若$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,則$\frac{1}{x}$+$\frac{1}{y}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出如下四個(gè)命題:
①命題“關(guān)于x的不等式$\frac{1-x}{1+x}$≥0的解集為{x|x<-1或x≥1}”為真命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④“m<$\frac{1}{4}$”是“方程x2+x+m=0有實(shí)數(shù)解”的必要不充分條件.
其中假命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案