若cos(π+α)=-
10
5
,且α∈(-
π
2
,0),則tan(
3
2
π+α
)的值為
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:已知等式利用誘導(dǎo)公式化簡(jiǎn)求出cosα的值,根據(jù)α的范圍,利用同角三角函數(shù)間的基本關(guān)系求出sinα的值,進(jìn)而求出tanα的值,原式變形后代入計(jì)算即可求出值.
解答: 解:∵cos(π+α)=-cosα=-
10
5
,即cosα=
10
5
,且α∈(-
π
2
,0),
∴sinα=-
1-cos2α
=-
15
5
,cotα=
cosα
sinα
=-
6
3
,
則tan(
2
+α)=-cotα=
6
3
,
故答案為:
6
3
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,以及運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)p:方程x2+mx+4=0有兩個(gè)不相等的實(shí)根;q:曲線:
x2
4
+
y2
m-1
=1表示的是焦點(diǎn)在x軸上的橢圓.若“p或q”是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x2-2|+x2+ax.
(1)若a=3,求方程f(x)=0的解;
(2)若函數(shù)f(x)在(0,2)上有兩個(gè)零點(diǎn)x1,x2
①求實(shí)數(shù)a的取值范圍;
②證明:
2
1
x1
+
1
x2
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log1227=a,求log616=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=[0,+∞],A={x|x2-2x-3≥0},B={x|x2+a<0},若(∁UA)∪B=∁UA,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(2x)=log2
6x+13
4
,則f(1)=( 。
A、log2
19
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合A={(x,y)|函數(shù)y=f(x),x∈(0,1)},B={(x,y)|x=a,a∈R,a是常數(shù)},則A∩B中元素個(gè)數(shù)是( 。
A、至少有1個(gè)
B、有且只有1個(gè)
C、可能2個(gè)
D、至多有1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)棱錐的高的兩個(gè)三等分點(diǎn)作兩個(gè)平行于棱錐底面的截面,則這個(gè)棱錐被這兩個(gè)截面分成的三部分的體積比為( 。
A、1:2:3
B、4:9:27
C、1:8:27
D、1:7:19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,側(cè)面PA⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求證:DM∥平面PCB;
(Ⅲ)求二面角A-BC-P的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案