6.設(shè)a=$\frac{ln3}{2}$,b=$\frac{ln4}{3}$,c=$\frac{ln6}{5}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

分析 由已知條件,直接利用對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=$\frac{ln3}{2}$=ln$\sqrt{3}$,
b=$\frac{ln4}{3}$=ln$\root{3}{4}$,
c=$\frac{ln6}{5}$=ln$\root{5}{6}$,
$\sqrt{3}$>$\root{3}{4}$>$\root{5}{6}$,
y=lnx是增函數(shù),
∴a>b>c.
故選:A.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},則集合B的子集的個數(shù)為( 。
A.4B.7C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義域為R的偶函數(shù),且f(x+1)=$\frac{1}{f(x)}$,若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則( 。
A.a>b>cB.a>c>bC.b>c>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)橢圓E的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點O為坐標(biāo)原點,點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點M在線段AB上.滿足|BM|=2|AM|,直線0M的斜率為$\frac{\sqrt{5}}{10}$.
(1)求橢圓的離心率;
(2)設(shè)點C的坐標(biāo)為(-a,0),N為線段BC的中點,點N關(guān)于直線AB的對稱點的縱坐標(biāo)為$\frac{13}{2}$,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若將函數(shù)f(x)=cosx(sinx+cosx)-$\frac{1}{2}$的圖象向右平移φ個單位,所得函數(shù)是奇函數(shù),則φ的最小正值是( 。
A.$\frac{3π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.經(jīng)過點(2,1)的直線l和兩坐標(biāo)軸相交于A、B兩點,若△AOB(O是原點)的面積恰為4,則符合要求的直線l有3條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知A,B,Q是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的三個頂點,橢圓的離心率e=$\frac{\sqrt{3}}{2}$,點B到直線AQ的距離是$\frac{4\sqrt{5}}{5}$,設(shè)P是橢圓上異于A,B,Q的任意一點,直線PA,PB分別與經(jīng)過點Q,且與x軸垂直的直線相交于M,N兩點.
(1)求橢圓的方程;
(2)求證:以MN為直徑的圓C與圓心在x軸上的定圓相切,并求出定圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在銳角△ABC中,B=60°,|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范圍為( 。
A.(0,12)B.[${-\frac{1}{4}$,12)C.(0,4]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點P是雙曲線$\frac{{x}^{2}}{4}$-y2=1上任意一點,A、B分別是雙曲線的左右頂點,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值為( 。
A.-3B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案