17.已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值是$\frac{11}{5}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.

解答 解:∵$tanβ=\frac{1}{2}$,則 sin2β-3sinβcosβ+4cos2β=$\frac{{sin}^{2}β-3sinβcosβ+{4cos}^{2}β}{{sin}^{2}β{+cos}^{2}β}$=$\frac{{tan}^{2}β-3tanβ+4}{{tan}^{2}β+1}$=$\frac{11}{5}$,
故答案為:$\frac{11}{5}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.$|\frac{1+2i}{2-i}|$=( 。
A.$\frac{3}{5}$B.1C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知點F為拋物線E:y2=2px(p>0)的焦點,點A(2,m)在拋物線E上,且|AF|=3.
(1)求拋物線E的方程;
(2)已知點G(-1,0),延長AF交拋物線E于點B,證明:GF為角AGB的角平分線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知A、B、C是△ABC的三個內(nèi)角,向量$\overrightarrow{m}$=(cosA+1,$\sqrt{3}$),$\overrightarrow{n}$=(sinA,1),且$\overrightarrow{m}$∥$\overrightarrow{n}$;
(1)求角A;           
(2)若$\frac{1+sin2B}{cos{\;}^{2}B-sin{\;}^{2}B}$=-3,求tanC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,D,C,B三點在地面的同一直線上,CD=a,從D,C兩點測得A的仰角分別是α,β(α<β),則點A離地面的高AB等于( 。
A.$\frac{acosαcosβ}{cos(β-α)}$B.$\frac{acosαcosβ}{sin(β-α)}$C.$\frac{asinαsinβ}{cos(β-α)}$D.$\frac{asinαsinβ}{sin(β-α)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|$\frac{2x+1}{x-2}$<0},B={x|x2>1},則A∩(∁RB)=( 。
A.(-$\frac{1}{2}$,1]B.[-1,$\frac{1}{2}$)C.(-$\frac{1}{2}$,$\frac{1}{2}$]D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,n-1)(其中m,n為正數(shù)),若$\overrightarrow a⊥\overrightarrow b$,則$\frac{2}{m}+\frac{1}{n}$的最小值是( 。
A.$2\sqrt{2}+3$B.$2\sqrt{3}+2$C.$3\sqrt{2}+2$D.$3\sqrt{3}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=$\sqrt{lg(2x-1)}$的定義域為:[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將標(biāo)號為1,2,3,4的四個籃球分給三位小朋友,每位小朋友至少分到一個籃球,且標(biāo)號1,2的兩個籃球不能分給同一個小朋友,則不同的分法種數(shù)為(  )
A.15B.20C.30D.42

查看答案和解析>>

同步練習(xí)冊答案