12.如圖所示,D,C,B三點在地面的同一直線上,CD=a,從D,C兩點測得A的仰角分別是α,β(α<β),則點A離地面的高AB等于(  )
A.$\frac{acosαcosβ}{cos(β-α)}$B.$\frac{acosαcosβ}{sin(β-α)}$C.$\frac{asinαsinβ}{cos(β-α)}$D.$\frac{asinαsinβ}{sin(β-α)}$

分析 先分別在直角三角形中表示出DB,BC,根據(jù)DC=DB-BC列等式求得AB.

解答 解:依題意知,DB=$\frac{AB}{tanα}$,BC=$\frac{AB}{tanβ}$,
∴DC=DB-BC=$\frac{AB}{tanα}$-$\frac{AB}{tanβ}$=a,
∴AB=$\frac{asinαsinβ}{sin(β-α)}$,
故選:D.

點評 本題主要考查了解三角形的實際應用.把實際問題轉(zhuǎn)化為三角形的問題,是常用思路.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)i為虛數(shù)單位,則復數(shù)z=(3-i)(1+3i)的模為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.$\int_0^{\frac{π}{2}}{2xdx}$的值是( 。
A.$\frac{π^2}{4}$B.$-\frac{π^2}{4}$C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知i是虛數(shù)單位,則復數(shù)Z=-1+(1-i)2在復平面內(nèi)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=2x+1的導數(shù)為f′(x),則f′(0)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$tanβ=\frac{1}{2}$,求sin2β-3sinβcosβ+4cos2β的值是$\frac{11}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知雙曲線$\frac{{x}^{2}}{cosα}$+$\frac{{y}^{2}}{sinα}$=1的離心率為$\sqrt{3}$,則sin2α=( 。
A.-1B.$\frac{\sqrt{3}}{2}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.程序框圖輸出a,b,c的含義是( 。
A.輸出的a是原來的c,輸出的b是原來的a,輸出的c是原來的b
B.輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b
C.輸出的a是原來的c,輸出的b是新的x,輸出的c是原來的b
D.輸出的a,b,c均等于x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列四個命題,其中不正確的命題為( 。
①若cos α=cos β,則α-β=2kπ,k∈Z;
②函數(shù)y=2cos$\frac{x}{3}$的圖象關(guān)于x=$\frac{π}{12}$對稱;
③函數(shù)y=cos(sin x)(x∈R)為偶函數(shù);
④函數(shù)y=sin|x|是周期函數(shù),且周期為2π.
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

同步練習冊答案