9.已知函數(shù)f(x)=$\frac{{x}^{2}+4}{x}$;
(1)證明f(x)為奇函數(shù);
(2)證明f(x)在區(qū)間(0,2)上為減函數(shù).

分析 (1)根據(jù)奇函數(shù)的定義即可證明,
(2)根據(jù)單調(diào)性的定義即可證明.

解答 證明:(1)f(x)的定義域是(-∞,0)∪(0,+∞),
f(-x)=$\frac{{x}^{2}+4}{-x}$=-f(x),
故函數(shù)f(x)是奇函數(shù);
(2)f(x)=x+$\frac{4}{x}$,
設(shè)x1,x2∈(0,2),且x1<x2,
∴f(x1)-f(x2)=(x1-x2)+4($\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$)=(x1-x2)+$\frac{4({x}_{2}-{x}_{1})}{{x}_{1}{x}_{2}}$=(x1-x2)(1-$\frac{4}{{x}_{1}•{x}_{2}}$)=(x1-x2)$\frac{{x}_{1}•{x}_{2}-4}{{x}_{1}•{x}_{2}}$,
∵0<x1<x2<2,
∴x1-x2<0,x1x2>0,x1x2<4,
∴f(x1)-f(x2)>0,
即f(x1)>f(x2),
∴f(x)在區(qū)間(0,2)上為減函數(shù)

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性和單調(diào)性的證明,掌握定義是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.葫蘆島市有4個(gè)重要旅游景點(diǎn):a是葫蘆山莊,b是興城古城,c是菊花島,d是九門口,現(xiàn)有A,B,C,D四位游客來葫游玩.
(1)假定他們每人只游覽一個(gè)景點(diǎn),且游覽每個(gè)景點(diǎn)都是隨機(jī)的.求四人游覽同一景點(diǎn)的概率;
(2)假定原計(jì)劃A只游覽a,B只游覽b,C只游覽c,D只游覽d.
①在(1)之下,求這四人恰有兩人完成原計(jì)劃的概率;
②若每人只游覽一個(gè)景點(diǎn),每個(gè)景點(diǎn)只能一人游覽,
求這四人至少有一人完成原計(jì)劃的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知a=4${\;}^{{{log}_3}4.1}}$,b=4${\;}^{{{log}_3}2.7}}$,c=($\frac{1}{2}$)${\;}^{{{log}_3}0.1}}$則( 。
A.a>b>cB.b>a>cC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|-2≤x≤2},B={x|a≤x≤a+2},當(dāng)A∪B=A時(shí),實(shí)數(shù)a的取值范圍是( 。
A.(-2,0]B.[-2,0)C.(-2,0)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=x2-2x+3的值域是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.f(x)=x2+ax+1在(1,+∞)為單調(diào)遞增,則a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=x2-2x+3在區(qū)間[a-2,a+2]上的最小值為6,則a的取值集合為( 。
A.[-3,5]B.[-5,3]C.{-3,5}D.{-5,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)滿足:f′(x)-f(x)=x•ex,且f(0)=$\frac{1}{2}$,則$\frac{f′(x)}{f(x)}$的最大值為( 。
A.0B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列四個(gè)圖形中,不是以x為自變量的函數(shù)圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案