A. | (-1,0)∪(0,+∞) | B. | (-∞,0)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-∞,-1)∪(1,+∞) |
分析 根據(jù)函數(shù)與方程之間的關(guān)系,利用換元法設(shè)設(shè)t=f(x),則條件等價(jià)為f(t)=0,作出對(duì)應(yīng)的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:由選項(xiàng)知k≠0,
設(shè)t=f(x),則由f(f(x))=0得f(t)=0,
∵當(dāng)x≤0時(shí),f(x)=$\frac{k}{x-1}$≠0,
∴當(dāng)x>0時(shí),由f(x)=lnx=0得x=1,
若f(t)=0,則t=1,
則若關(guān)于x的方程f(f(x))=0有且只有一個(gè)實(shí)數(shù)解
則等價(jià)為f(x)=1有唯一解.
作出函數(shù)f(x)的圖象,由圖象知當(dāng)x>0時(shí),f(x)=lnx=1有一個(gè)解,
則等價(jià)為當(dāng)x≤0時(shí),f(x)=$\frac{k}{x-1}$=1無解,
即若k>0,滿足$\frac{k}{x-1}$=1無解,
若k<0,則函數(shù)f(x)=$\frac{k}{x-1}$在x≤0時(shí)為增函數(shù),則函數(shù)的最大值為f(0)=-k,
此時(shí)只要滿足-k<1,即-1<k<0,即可,
綜上實(shí)數(shù)k的取值范圍是(-1,0)∪(0,+∞),
故選:A
點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用換元法將條件轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題是解決本題的關(guān)鍵.利用數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想,綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x+y+1=0 | C. | x+y-1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
物體重量(單位g) | 1 | 2 | 3 | 4 | 5 |
彈簧長(zhǎng)度(單位cm) | 1.5 | 3 | 4 | 5 | 6.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{17}{96}$ | B. | $\frac{5}{32}$ | C. | $\frac{1}{6}$ | D. | $\frac{7}{48}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
運(yùn)動(dòng)時(shí)間 性別 | 運(yùn)動(dòng)達(dá)人 | 非運(yùn)動(dòng)達(dá)人 | 合計(jì) |
男生 | 36 | ||
女生 | 26 | ||
合計(jì) | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{8}{27}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{7}{27}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com