18.已知集合A={0,1,2,3},集合B={y|y=-|x|+2,x∈R},則A∩B的元素個數(shù)為( 。
A.0B.1C.2D.3

分析 求出集合的等價條件,根據(jù)集合的基本運算進行求解即可.

解答 解:∵B={y|y=-|x|+2,x∈R}={y|y≤2},
則A∩B={0,1,2},
則A∩B的元素個數(shù)為3個,
故選:D.

點評 本題主要考查集合的基本運算,求出集合B的等價條件是解決本題的關鍵,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.拋物線y2=8x的準線與雙曲線C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的兩條漸近線所圍成的三角形面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求解下列問題:
(1)用排列數(shù)表示(55-n)(56-n)…(69-n)(n∈N*且n<55);
(2)計算$\frac{{2A}_{8}^{5}+{7A}_{8}^{4}}{{A}_{8}^{8}{-A}_{9}^{5}}$;
(3)解方程:${A}_{2x+1}^{4}$=140${A}_{x}^{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.i是虛數(shù)單位,若復數(shù)(a+bi)(1+i)=7-3i,則$\frac{a}$的值為$-\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,D為邊BC上一點,tan∠BAD=$\frac{1}{3}$,tan∠CAD=$\frac{1}{2}$,AB=$\sqrt{2}$AC,BC=3,則AD=( 。
A.$\frac{7}{2}$B.$\frac{{3\sqrt{5}}}{2}$C.2$\sqrt{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知遞增的等差數(shù)列{an}的首項是1,Sn是其前n項和,且$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}=\frac{3}{2}$(n∈N*).
(1)求數(shù)列{an}的通項公式an
(2)設bn=an•2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若集合A={x|-2≤x≤1},B={x|x<0},則A∪B=( 。
A.(-∞,0)B.(-∞,1]C.[-2,0)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.數(shù)列{an}滿足a1=2,且an+1-an=2n(n∈N*),則數(shù)列$\{\frac{1}{a_n}\}$的前10項和為$\frac{1023}{1024}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.執(zhí)行如圖的程序框圖,若輸入n值為4,則輸出的結果為( 。
A.8B.21C.34D.55

查看答案和解析>>

同步練習冊答案