3.已知遞增的等差數(shù)列{an}的首項(xiàng)是1,Sn是其前n項(xiàng)和,且$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}=\frac{3}{2}$(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)bn=an•2an,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)設(shè)等差數(shù)列{an}有公差為d,d>0;從而化簡可得3d2+d-4=0,從而解得d=1,從而寫出通項(xiàng)公式;
(2)化簡bn=an•2an=n•2n,從而利用錯(cuò)位相減法求其前n項(xiàng)和.

解答 解:(1)設(shè)等差數(shù)列{an}有公差為d,d>0;
則1+$\frac{1}{2+d}$+$\frac{1}{3+3d}$=$\frac{3}{2}$,
整理可得,3d2+d-4=0,
解得,d=1或d=-$\frac{4}{3}$(舍去),
故數(shù)列{an}的通項(xiàng)公式an=n;
(2)bn=an•2an=n•2n,
故Tn=1×2+2×4+3×8+…+n•2n
2Tn=1×4+2×8+3×16+…+n•2n+1
作差可得:
-Tn=2+4+8+…+2n-n•2n+1,
=2n+1-2-n•2n+1,
故Tn=(n-1)•2n+1+2.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的性質(zhì)應(yīng)用及整體思想與方程思想的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.三個(gè)女生和四個(gè)男生排成一排
(Ⅰ)如果女生必須全排在一起,有多少種不同的排法?
(Ⅱ)如果女生必須全分開,有多少種不同的排法?
(Ⅲ)如果兩端不能都排女生,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.假設(shè)你家訂了一份牛奶,送奶工人在早上6:00-7:00之間把牛奶送到你家,你離開家去上學(xué)的時(shí)間在早上6:30-7:30之間,則你在離開家前能收到牛奶的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}$,b=$lo{g_{\frac{1}{3}}}$2,c=lo${g_{\frac{1}{2}}}$3,則a,b,c三者的大小關(guān)系是( 。
A.b>c>aB.c>a>bC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={0,1,2,3},集合B={y|y=-|x|+2,x∈R},則A∩B的元素個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=asinx+x2,若f(1)=2,則f(-1)=( 。
A.2B.-2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.隨著2022年北京冬奧會(huì)的成功申辦,冰雪項(xiàng)目已經(jīng)成為北京市民冬季休閑娛樂的重要方式.為普及冰雪運(yùn)動(dòng),寒假期間學(xué)校組織高一年級(jí)學(xué)生參加冬令營.其中一班有3名男生和1名女生參加,二班有1名男生和2名女生參加.活動(dòng)結(jié)束時(shí),要從參加冬令營的學(xué)生中選出2名進(jìn)行展示.
(Ⅰ)若要從一班和二班參加冬令營的學(xué)生中各任選1名,求選出的2名學(xué)生性別相同的概率;
(Ⅱ)若要從參加冬令營的這7名學(xué)生中任選2名,求選出的2名學(xué)生來自不同班級(jí)且性別不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,集合P={x|x2-2x≤0},Q={y|y=x2-2x},則P∩Q為( 。
A.[-1,2]B.[0,2]C.[0,+∞)D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項(xiàng)和,d為數(shù)列{an}的公差,若對(duì)任意n∈N*,都有Sn>0,且a2a4=9,則d的取值范圍為$[0,\sqrt{3})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案