4.已知雙曲線的離心率$e=\frac{5}{3}$,且焦點(diǎn)到漸近線的距離為4,則該雙曲線實(shí)軸長(zhǎng)為( 。
A.6B.5C.4D.3

分析 設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),運(yùn)用離心率公式和點(diǎn)到直線的距離公式,結(jié)合雙曲線a,b,c的關(guān)系,解方程可得a=3,進(jìn)而得到雙曲線的實(shí)軸長(zhǎng)2a.

解答 解:設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
由題意可得e=$\frac{c}{a}$=$\frac{5}{3}$,
可設(shè)焦點(diǎn)(c,0)到漸近線y=$\frac{a}$x的距離為4,
可得$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b=4,
由a2+b2=c2,
解得a=3,
可得該雙曲線實(shí)軸長(zhǎng)為2a=6.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的實(shí)軸長(zhǎng),注意運(yùn)用離心率公式和點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知各項(xiàng)都不相等的等差數(shù)列{an},滿足a2n=2an-3,且a62=a1•a21,則數(shù)列{$\frac{Sn}{{2}^{n-1}}$}項(xiàng)中的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知△ABC中,AB=AC=10,cosB=$\frac{3}{5}$,求底邊BC及頂角A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖,已知F1、F2為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),點(diǎn)P在第一象限,且滿足($\overrightarrow{{F}_{1}P}$+$\overrightarrow{{F}_{1}{F}_{2}}$)•$\overrightarrow{{F}_{2}P}$=0,|$\overrightarrow{{F}_{2}P}$|=a,線段PF2與雙曲線C交于點(diǎn)Q,若$\overrightarrow{{F}_{2}P}$=5$\overrightarrow{{F}_{2}Q}$,則雙曲線C的漸近線方程為( 。
A.y=±$\frac{1}{2}$xB.y=±$\frac{\sqrt{5}}{5}$xC.y=±$\frac{2\sqrt{5}}{5}$xD.y=±$\frac{\sqrt{3}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)y=ax+b(a>0且a≠1)的圖象經(jīng)過(guò)第二、三、四象限,則有( 。
A.0<a<1,b<-1B.0<a<1,b>1C.a>1,b<-1D.a>1,b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,EF是圓O的直徑,AB∥EF,點(diǎn)M在EF上,AM、BM分別交圓O于點(diǎn)C、D.設(shè)圓O的半徑是r,OM=m.
(Ⅰ)證明:AM2+BM2=2(r2+m2);
(Ⅱ)若r=3m,求$\frac{AM}{CM}+\frac{BM}{DM}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知拋物線y=x2的焦點(diǎn)為F,經(jīng)過(guò)y軸正半軸上一點(diǎn)N作直線l與拋物線交于A,B兩點(diǎn),且$\overrightarrow{OA}$$•\overrightarrow{OB}$=2(O為坐標(biāo)原點(diǎn)),點(diǎn)F關(guān)于直線OA的對(duì)稱點(diǎn)為C,則四邊形OCAB面積的最小值為(  )
A.3B.$\sqrt{3}$C.2$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.三個(gè)女生和四個(gè)男生排成一排
(Ⅰ)如果女生必須全排在一起,有多少種不同的排法?
(Ⅱ)如果女生必須全分開(kāi),有多少種不同的排法?
(Ⅲ)如果兩端不能都排女生,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.假設(shè)你家訂了一份牛奶,送奶工人在早上6:00-7:00之間把牛奶送到你家,你離開(kāi)家去上學(xué)的時(shí)間在早上6:30-7:30之間,則你在離開(kāi)家前能收到牛奶的概率是( 。
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案