9.如圖,EF是圓O的直徑,AB∥EF,點(diǎn)M在EF上,AM、BM分別交圓O于點(diǎn)C、D.設(shè)圓O的半徑是r,OM=m.
(Ⅰ)證明:AM2+BM2=2(r2+m2);
(Ⅱ)若r=3m,求$\frac{AM}{CM}+\frac{BM}{DM}$的值.

分析 (Ⅰ)作AA′⊥EF交EF于點(diǎn)A′,作BB′⊥EF交EF于點(diǎn)B′.求出A′M和 B′M,可得A′M2+B′M2,從而求得AM2+BM2 的值.
(Ⅱ)因?yàn)镋M=r-m,F(xiàn)M=r+m,計(jì)算AM•CM=r2-m2,代入要求的式子.

解答 解:(Ⅰ)作AA′⊥EF交EF于點(diǎn)A′,作BB′⊥EF交EF于點(diǎn)B′.
因?yàn)锳′M=0A′-OM,B′M=OB′+OM=OA′+OM,
所以A′M2+B′M2=2OA′2+2OM2
從而AM2+BM2=AA′2+A′M2+BB′2+B′M2=2(AA′2+OA′2+OM2),
∴AM2+BM2=2(r2+m2).
(Ⅱ)因?yàn)镋M=r-m,F(xiàn)M=r+m,
所以AM•CM=BM•DM=EM•FM=r2-m2
因?yàn)?\frac{AM}{CM}$+$\frac{BM}{DM}$=$\frac{{AM}^{2}}{AM•CM}$+$\frac{{BM}^{2}}{BM•DM}$=$\frac{{AM}^{2}{+BM}^{2}}{EM•FM}$,
∴$\frac{AM}{CM}$+$\frac{BM}{DM}$=$\frac{2{(r}^{2}{+m}^{2})}{{r}^{2}{-m}^{2}}$.
又因?yàn)閞=3m,∴$\frac{AM}{CM}$+$\frac{BM}{DM}$=$\frac{5}{2}$.

點(diǎn)評 本題主要考查與圓有關(guān)的比例線段,相交弦定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x∈[0,+∞)}\\{2-x,x∈(-∞,0)}\end{array}\right.$,則f[f(-3)]=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列關(guān)系式中,根式與分?jǐn)?shù)指數(shù)冪互化正確的是( 。
A.$\root{3}{a}$•$\sqrt{-a}$=-a${\;}^{\frac{5}{6}}$B.x${\;}^{\frac{2}{4}}$=$\sqrt{x}$C.($\root{3}{^{\frac{3}{2}}}$)${\;}^{\frac{3}{2}}$=b3D.(a-b)${\;}^{-\frac{5}{2}}$=$\sqrt{(a-b)^{-5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的左焦點(diǎn)到右頂點(diǎn)的距離為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知雙曲線的離心率$e=\frac{5}{3}$,且焦點(diǎn)到漸近線的距離為4,則該雙曲線實(shí)軸長為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)).在極坐標(biāo)系 (與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A、B,若點(diǎn)P的坐標(biāo)為(2,1),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦點(diǎn)為F,左、右頂點(diǎn)分別為A1,A2,以A1A2為直徑的圓與雙曲線的一條漸近線交于點(diǎn)P(點(diǎn)P在第一象限內(nèi)),若直線FP平行于另一條漸近線,則該雙曲線離心率e的值為( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.以原點(diǎn)與曲線上任一點(diǎn)連線的斜率k為參數(shù),化普通方程4x2-9y2=36(x<0)為參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)變量x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-4≤0{,_{\;}}}\\{x-2y+2≤0}\\{kx-y+1≥0}\end{array}}$其中k>$\frac{1}{2}$,若目標(biāo)函數(shù)z=x-y的最小值大于-3,則k的取值范圍是(  )
A.($\frac{1}{2}$,3)B.(3,+∞)C.($\frac{1}{2}$,5)D.(5,+∞)

查看答案和解析>>

同步練習(xí)冊答案