分析 由題意知a2n=a1+(2n-1)d,2an-3=2a1+2(n-1)d-3,從而可得a1=d+3,再結(jié)合a62=a1•a21可得等差數(shù)列{an}的首項(xiàng)為5,公差為2,從而化簡(jiǎn)$\frac{Sn}{{2}^{n-1}}$=$\frac{n(n+4)}{{2}^{n-1}}$=2•$\frac{n(n+4)}{{2}^{n}}$,從而可得$\left\{\begin{array}{l}{2\frac{n(n+2)}{{2}^{n}}≥2\frac{(n-1)(n+1)}{{2}^{n}}}\\{2\frac{n(n+2)}{{2}^{n}}≥2\frac{(n+1)(n+3)}{{2}^{n+1}}}\end{array}\right.$,從而解得.
解答 解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,
∴a2n=a1+(2n-1)d,
2an-3=2a1+2(n-1)d-3,
∴a1+(2n-1)d=2a1+2(n-1)d-3,
即a1=d+3,
∵a62=a1•a21,
∴(d+3+5d)2=(d+3)•(d+3+20d),
即d=0(舍去)或d=2,
故等差數(shù)列{an}的首項(xiàng)為5,公差為2,
故Sn=5n+$\frac{n(n-1)}{2}$•2=n(n+4),
故$\frac{Sn}{{2}^{n-1}}$=$\frac{n(n+4)}{{2}^{n-1}}$=2•$\frac{n(n+4)}{{2}^{n}}$,
故$\left\{\begin{array}{l}{\frac{{S}_{n}}{{2}^{n-1}}≥\frac{{S}_{n-1}}{{2}^{n-2}}}\\{\frac{{S}_{n}}{{2}^{n-1}}≥\frac{{S}_{n+1}}{{2}^{n}}}\end{array}\right.$,
即$\left\{\begin{array}{l}{2\frac{n(n+2)}{{2}^{n}}≥2\frac{(n-1)(n+1)}{{2}^{n}}}\\{2\frac{n(n+2)}{{2}^{n}}≥2\frac{(n+1)(n+3)}{{2}^{n+1}}}\end{array}\right.$,
解得,$\sqrt{6}$-1≤n≤$\sqrt{6}$,
故n=2,
故數(shù)列{$\frac{Sn}{{2}^{n-1}}$}項(xiàng)中的最大值為$\frac{{S}_{2}}{{2}^{2-1}}$=6,
故答案為:6.
點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了最大值的求法與應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 9 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com