7.如圖是一個(gè)算法的流程圖,則輸出i的值為4.
 

分析 據(jù)流程圖可知,計(jì)算出a,判定是否滿足a>50,不滿足則循環(huán),直到滿足就跳出循環(huán),最后求出i值即可.

解答 解:i=1,a=1×1+1=2<50,
i=2,a=2×2+1=5<50,
i=3,a=3×5+1=16<50,
i=4,a=4×16+1>50,
此時(shí)i=4,
故答案為:4.

點(diǎn)評(píng) 本題考查算法流程圖,直到型循環(huán)結(jié)構(gòu).循環(huán)結(jié)構(gòu)有兩種形式:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu),當(dāng)型循環(huán)是先判斷后循環(huán),直到型循環(huán)是先循環(huán)后判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.我國(guó)古代秦九韶算法可計(jì)算多項(xiàng)式anxn+an-1xn-1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時(shí),當(dāng)多項(xiàng)式為x4+4x3+6x2+4x+1的值為(  )
A.5B.16C.15D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,B=$\frac{π}{6}$,C=$\frac{π}{4}$,S△ABC=$\frac{\sqrt{3}+1}{2}$,則c=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn)F的直線與雙曲線相交于A,B兩點(diǎn),當(dāng)AB⊥x軸,稱|AB|為雙曲線的通徑.若過(guò)焦點(diǎn)F的所有焦點(diǎn)弦AB中,其長(zhǎng)度的最小值為$\frac{2^{2}}{a}$,則此雙曲線的離心率的范圍為( 。
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$]C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.執(zhí)行如圖所示的流程圖,輸出的S的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{{{a^2}-1}}$=1(a>1)的左、右頂點(diǎn)分別為A、B,P是橢圓C上任一點(diǎn),且點(diǎn)P位于第一象限.直線PA交y軸于點(diǎn)Q,直線PB交y軸于點(diǎn)R.當(dāng)點(diǎn)Q坐標(biāo)為(0,1)時(shí),點(diǎn)R坐標(biāo)為(0,2)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:$\overrightarrow{OQ}$•$\overrightarrow{OR}$為定值;
(3)求證:過(guò)點(diǎn)R且與直線QB垂直的直線經(jīng)過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.執(zhí)行如圖所示的算法流程圖,則輸出k的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若函數(shù)f(x)=2x2-klnx在(1,+∞)上是增函數(shù),則實(shí)數(shù)k的取值范圍是k≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列中,a1=1,a2=$\frac{1}{4}$,且an+1=$\frac{{(n-1){a_n}}}{{n-{a_n}}}$(n=2,3,4,…).
(Ⅰ)證明:求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:(i)對(duì)一切n∈N*,都有$\frac{1}{{a_{n+1}^2}}$>$\frac{1}{a_n^2}$;
(ii)對(duì)一切n∈N*,有a12+a22+…+an2<$\frac{7}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案