6.下面有五個(gè)命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②$\frac{cos(α-π)tan(α-2π)tan(2π-α)}{sin(π+α)}$=tanα;
③函數(shù)y=sinx+cosx的圖象均關(guān)于點(diǎn)($\frac{π}{4}$,0)成中心對稱;
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位得到y(tǒng)=3sin2x的圖象.
其中正確命題的編號是①④.(寫出所有正確命題的編號)

分析 ①將三角函數(shù)進(jìn)行化簡,結(jié)合周期公式進(jìn)行求解.
②利用三角函數(shù)的誘導(dǎo)公式進(jìn)行化簡即可.
③利用輔助角公式將函數(shù)進(jìn)行化簡,結(jié)合三角函數(shù)的對稱性進(jìn)行求解.
④根據(jù)三角函數(shù)的圖象關(guān)系進(jìn)行平移化簡即可.

解答 解:①函數(shù)y=sin4x-cos4x=sin2x-cos2x=-cos2x,則函數(shù)的最小正周期是T=$\frac{2π}{2}$=π;故①正確,
②$\frac{cos(α-π)tan(α-2π)tan(2π-α)}{sin(π+α)}$=$\frac{(-cosα)tanα(-tanα)}{-sinα}$=-tanα;故②錯(cuò)誤
③函數(shù)y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),由x+$\frac{π}{4}$=kπ,得x=kπ-$\frac{π}{4}$,k∈Z,則函數(shù)的圖象均關(guān)于點(diǎn)($\frac{π}{4}$,0)不成中心對稱;故③錯(cuò)誤,
④把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象向右平移$\frac{π}{6}$個(gè)單位得到y(tǒng)=3sin[2(x-$\frac{π}{6}$)+$\frac{π}{3}$]=3sin2x,故④正確,
故答案為:①④

點(diǎn)評 本題主要考查與三角函數(shù)有關(guān)的命題的真假判斷,涉及的知識點(diǎn)較多,考查學(xué)生的轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若兩個(gè)圓心角相同的扇形的面積之比為1:4,則這兩個(gè)扇形的周長之比為( 。
A.1:$\sqrt{2}$B.1:2C.1:4D.1:2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)平面直角坐標(biāo)系xOy中,曲線G:y=$\frac{{x}^{2}}{2}$+$\frac{a}{2}$x-a2(x∈R),a為常數(shù).
(1)若a≠0,曲線G的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),求經(jīng)過這三個(gè)交點(diǎn)的圓C的一般方程;
(2)在(1)的條件下,求圓心C所在曲線的軌跡方程;
(3)若a=0,已知點(diǎn)M(0,3),在y軸上存在定點(diǎn)N(異于點(diǎn)M)滿足:對于圓C上任一點(diǎn)P,都有$\frac{|PN|}{|PM|}$為一常數(shù),試求所有滿足條件的點(diǎn)N的坐標(biāo)及該常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(0,1),$\overrightarrow{c}$=(3,6),λ為實(shí)數(shù),若($\overrightarrow{a}$+λ$\overrightarrow$)∥$\overrightarrow{c}$,則λ等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某高校進(jìn)行自主招生,先從報(bào)名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機(jī)抽取24名筆試者的成績,如表所示:
分?jǐn)?shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)
人數(shù)234951
據(jù)此估計(jì)允許參加面試的分?jǐn)?shù)線大約是( 。
A.90B.85C.80D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知A(x1,f(x1),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過點(diǎn)P(1,-$\sqrt{3}$),若|f(x1)-f(x2)|=4時(shí),|x1-x2|的最小值為$\frac{π}{3}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[0,$\frac{π}{6}$]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.甲、乙、丙三個(gè)袋子中分別裝有5個(gè)小球(這些球除顏色外都相同),甲袋中裝有4個(gè)紅球和1個(gè)綠球,乙袋中裝有1個(gè)白球、3個(gè)紅球和1個(gè)綠球,丙袋中裝有2個(gè)白球和3個(gè)紅球.
(Ⅰ)若從甲袋中有放回的抽取3次(每次抽取1個(gè)小球),求至少有兩次抽到紅球的概率;
(II)若從乙、丙兩個(gè)袋子中各抽取2個(gè)小球,用ξ表示抽到的4個(gè)小球中白球的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn),H分別是BC,PC,PD的中點(diǎn).
(Ⅰ)證明:AE⊥PD;
(Ⅱ)設(shè)平面PAB∩平面PCD=l,求證:FH∥l;
(Ⅲ)設(shè)H是棱PD上的動(dòng)點(diǎn),若EH與平面PAD所成最大角的正切值為$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.一個(gè)空間幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積為( 。
A.26+4$\sqrt{2}$B.27+4$\sqrt{2}$C.34+4$\sqrt{2}$D.17+4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案