已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C存在與直線y=ex垂直的切線,則實(shí)數(shù)m的取值范圍為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出函數(shù)的導(dǎo)數(shù),運(yùn)用兩直線垂直的條件可得ex-m=-
1
e
有解,再由指數(shù)函數(shù)的單調(diào)性,即可得到m的范圍.
解答: 解:函數(shù)f(x)=ex-mx+1的導(dǎo)數(shù)為f′(x)=ex-m,
若曲線C存在與直線y=ex垂直的切線,
即有ex-m=-
1
e
有解,
即m=ex+
1
e
,
由ex>0,則m>
1
e

則實(shí)數(shù)m的范圍為(
1
e
,+∞).
故答案為:(
1
e
,+∞).
點(diǎn)評:本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處切線的斜率,同時(shí)考查兩直線垂直的條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為4,點(diǎn)E,F(xiàn)分別是線段AB,C1D1上的動(dòng)點(diǎn),點(diǎn)P是上底面A1B1C1D1內(nèi)一動(dòng)點(diǎn),且滿足點(diǎn)P到點(diǎn)F的距離等于點(diǎn)P到平面ABB1A1的距離,則當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的最小值是(  )
A、5
B、4
C、4
2
D、2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的平面直觀圖是邊長為2的正三角形,作出它原來的圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)Ox、Oy是平面內(nèi)相交成60°角的兩條數(shù)軸,
e1
e2
分別是與x軸,y軸正方向同向的單位向量,若向量
OP
=x
e1
+y
e2
,則把有序數(shù)對(x,y)叫做向量
OP
在坐標(biāo)系xOy中的坐標(biāo),假設(shè)
OP
=3
e1
+2
e2

(1)計(jì)算|
OP
|的大小;
(2)由平面向量基本定理,本題中向量坐標(biāo)的規(guī)定是否合理?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程2m2x2+2mx+1-m2=0(m>1),求證:這個(gè)方程有一個(gè)正根和一個(gè)負(fù)根,且正根在(0,1)之間,負(fù)根在(-1,0)之間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=1,又?jǐn)?shù)列{
1
an+1
}為等差數(shù)列,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合S={1,2,3,4,5},從5的所有非空子集中,等可能的取出一個(gè).
(1)設(shè)A⊆S,若x∈A,則6-x∈A,就稱子集A滿足性質(zhì)p,求所取出的非空子集滿足性質(zhì)p的概率;
(2)所取出的非空子集的最大元素為ξ,求ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取n份試卷進(jìn)行成績分析,得到數(shù)學(xué)成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學(xué)生人數(shù)為6.
(Ⅰ)求直方圖中x的值;
(Ⅱ)試估計(jì)所抽取的數(shù)學(xué)成績的平均數(shù);
(Ⅲ)試根據(jù)樣本估計(jì)“該校高一學(xué)生期末數(shù)學(xué)考試成績≥70”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=kx+1與曲線f(x)=|x+
1
x
|-|x-
1
x
|恰有四個(gè)不同的交點(diǎn),則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案