A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
分析 根據(jù)已知求出函數(shù)的解析式,根據(jù)余弦型函數(shù)的圖象和性質(zhì),逐一分析四個結(jié)論的真假,可得答案.
解答 解:∵函數(shù)f(x)=cos2xcosφ-sin2xsinφ=cos(2x+φ)的圖象的一個對稱中心為($\frac{π}{6}$,0),
故cos($\frac{π}{3}$+φ)=0,解得:φ=$\frac{π}{6}$+kπ,k∈Z,
∵0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$,
∴f(x)=cos(2x+$\frac{π}{6}$);
對于①,當x=$\frac{5}{12}$π時,f(x)取最小值-1,故①直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸,故①正確;
對于②,當x∈[0,$\frac{π}{6}$]時,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{π}{2}$],故②函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減,故②正確;
對于③,函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位可得到y(tǒng)=cos(2x-$\frac{π}{6}$)的圖象,故③錯誤;
對于④,當x∈[0,$\frac{π}{2}$]時,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],故2x+$\frac{π}{6}$=π,即x=$\frac{5}{12}$π時,函數(shù)取最小值-1.故④函數(shù)f(x)在[0,$\frac{π}{2}$]的最小值為-1.故④正確;
故選:C
點評 本題以命題的真假判斷與應用為載體,考查了三角函數(shù)的圖象和性質(zhì),難度中檔.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{|{a+b}|}}{2}$≥$\sqrt{|{ab}|}$ | B. | $\frac{a}$+$\frac{a}$≥2 | C. | $\frac{{{a^2}+{b^2}}}{2}$≥(${\frac{a+b}{2}}$)2 | D. | (a+b)($\frac{1}{a}$+$\frac{1}$)≥4(a+b) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com