16.已知集合A={x|x2-x≤0},B={x|f(x)=lg(1-|x|)},則A∪B=(-1,1].

分析 求出A中不等式的解集確定出A,求出B中x的范圍確定出B,找出A與B的并集即可.

解答 解:由A中不等式變形得:x(x-1)≤0,
解得:0≤x≤1,即A=[0,1],
由B中f(x)=lg(1-|x|),得到1-|x|>0,即|x|<1.
解得:-1<x<1,即B=(-1,1),
則A∪B=(-1,1],
故答案為:(-1,1]

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=cos2xcosφ-sin2xsinφ(0<φ<$\frac{π}{2}$)的圖象的一個對稱中心為($\frac{π}{6}$,0),則下列說法正確的個數(shù)是(  )
①直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸
②函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減
③函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個單位可得到y(tǒng)=cos2x的圖象
④函數(shù)f(x)在[0,$\frac{π}{2}$]的最小值為-1.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sin(${\frac{x}{2}$+$\frac{π}{4}}$)cos(${\frac{x}{2}$+$\frac{π}{4}}$)-sin(x+π).
(1)求f(x)的最小正周期;
(2)若將f(x)的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)g(x)的圖象,求g(x)在[0,π]上的最小值;
(3)若f(α)=$\frac{8}{5}$,α∈(${\frac{π}{6}$,$\frac{π}{2}}$),求sin(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=x+$\frac{a}{x}$(a為常數(shù),且a>0).
(1)是否存在常數(shù)a,使f(x)在(0,3]上單調(diào)遞減,且在[3,+∞)上單調(diào)遞增?若存在,求出a的值,若不存在,請說明理由;
(2)若關(guān)于x的不等式x+$\frac{a}{x}$-m≤0(m為常數(shù))在[1,4]上恒成立,求常數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知復數(shù)z滿足:zi=2+i(i是虛數(shù)單位),則z對應的點在復平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知p:?x0∈R,m|sinx0+2|-9≥0,q:?x∈R,x2+2mx+1,若p∨p為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列(bn>0).( 。
A.若b7≤a6,則b4+b10≥a3+a9B.若b7≤a6,則b4+b10≤a3+a9
C.若b6≥a7,則b3+b9≥a4+a10D.若b6≤a7,則b3+b9≤a4+a10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù)f(x)=mlnx+(m-1)x.
(1)若f(x)存在最大值M,且M>0,求m的取值范圍.
(2)當m=1時,試問方程xf(x)-$\frac{x}{{e}^{x}}$=-$\frac{2}{e}$是否有實數(shù)根,若有,求出所有實數(shù)根;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)( A≠0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)在$x=\frac{2π}{3}$時取得最大值,且它的最小正周期為π,則( 。
A.f(x)的圖象過點(0,$\frac{1}{2}$)B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個對稱中心是$({\frac{5π}{12},0})$D.f(x)的圖象的一條對稱軸是x=$\frac{5π}{12}$

查看答案和解析>>

同步練習冊答案