14.復(fù)數(shù)z=$\frac{4+3i}{1+2i}$的虛部為( 。
A.iB.-iC.-1D.1

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)z,則答案可求.

解答 解:z=$\frac{4+3i}{1+2i}$=$\frac{(4+3i)(1-2i)}{(1+2i)(1-2i)}=\frac{10-5i}{5}=2-i$,
則復(fù)數(shù)z=$\frac{4+3i}{1+2i}$的虛部為:-1.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos2ωx-sin2ωx+2$\sqrt{3}$cosωx•sinωx,其中ω>0,若f(x)相鄰兩條對(duì)稱軸間的距離不小于$\frac{π}{2}$
(1)求ω的取值范圍及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=$\sqrt{3}$,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求sinB•sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三棱柱ABC-A1B1C1中,△ABC是等邊三角形,AA1⊥底面ABC,AB=2,AA1=$\sqrt{2}$,則異面直線AC1與B1C所成的角的大小是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:

由于這些數(shù)能夠表示成三角形將其稱為三角形數(shù),記第n個(gè)三角形數(shù)為an(如a4=10),令S=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$,則S=( 。
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2015}{2016}$D.$\frac{4030}{2016}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知兩點(diǎn)F1(-1,0),F(xiàn)(1,0),且|F1F2|是|PF1|與|PF2|的等差數(shù)列中項(xiàng),則動(dòng)點(diǎn)P所形成的軌跡的離心率是( 。
A.$\frac{\sqrt{7}}{4}$B.2C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則坐標(biāo)原點(diǎn)O與圓(x-$\sqrt{a}$)2+(y+$\sqrt$)2=2的位置關(guān)系是( 。
A.點(diǎn)O在圓外B.點(diǎn)O在圓上C.點(diǎn)O在圓內(nèi)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形數(shù)      N(n,4)=n2
五邊形數(shù)      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六邊形數(shù)      N(n,6)=2n2-n
可以推測(cè)N(n,k)的表達(dá)式,由此計(jì)算N(10,24)=1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,矩形BDEF垂直于正方形ABCD,GC垂直于平面ABCD,且AB=DE,CG=$\frac{1}{2}$DE.
(1)證明:面GEF⊥面AEF;
(2)求二面角B-EG-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3,設(shè)a>-1,且當(dāng)x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時(shí),f(x)≤g(x),則a的取值范圍是(-1,$\frac{4}{3}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案