分析 由x的范圍,化簡(jiǎn)f(x)=1+a,由恒成立思想可得a≤x+2的最小值,運(yùn)用一次函數(shù)的單調(diào)性,可得最小值,解不等式即可得到a的范圍.
解答 解:當(dāng)x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時(shí),f(x)=|2x-1|+|2x+a|=1-2x+2x+a=1+a,
由a>-1,當(dāng)x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時(shí),f(x)≤g(x),
即為1+a≤x+3,即a≤x+2,
由x∈[-$\frac{a}{2}$,$\frac{1}{2}$],可得x+2∈[2-$\frac{a}{2}$,$\frac{5}{2}$],
即有a≤2-$\frac{a}{2}$,解得-1<a≤$\frac{4}{3}$.
則a的取值范圍是(-1,$\frac{4}{3}$].
故答案為:(-1,$\frac{4}{3}$].
點(diǎn)評(píng) 本題考查含絕對(duì)值函數(shù)的化簡(jiǎn)和運(yùn)用,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用轉(zhuǎn)化思想,及參數(shù)分離和函數(shù)的單調(diào)性求最值,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i | B. | -i | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2] | B. | (-∞,1) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | $\frac{2π}{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com