19.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥0}\\{x+2y-4≤0}\\{x-y-1≤0}\end{array}\right.$,則x+y的最大值為(  )
A.1B.2C.3D.4

分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+y得y=-x+z,
平移直線y=-x+z,
由圖象可知當(dāng)直線y=-x+z經(jīng)過點B時,直線y=-x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}{x+2y-4=0}\\{x-y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,即A(2,1),
代入目標(biāo)函數(shù)z=x+y得z=2+1=3.
即目標(biāo)函數(shù)z=x+y的最大值為3.
故選:C

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.利用平移確定目標(biāo)函數(shù)取得最優(yōu)解的條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.三個函數(shù)①y=$\frac{1}{x}$;②y=2-x;③y=-x3中,在其定義域內(nèi)是奇函數(shù)的個數(shù)是( 。
A.1B.0C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={y|y≥-1),N={x|-1≤x≤1),則M∩N=( 。
A.[-1,1]B.[-1,+∞)C.[1,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,AB=9,AC=15,∠BAC=120°,P是△ABC所在平面外一點,P到三個頂點間的距離都是14,則P到△ABC所在平面的距離為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集U=R,集合A={x|x<-1或x≥3},B={x|2x-1≤3}.求:
(1)A∪B;(2)A∩(CUB);(3)(CUA)∪(CUB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若四面體的三視圖如圖所示,求該四面體的外接球的表面積41π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把顏色分別為紅、黑、白的3個球隨機地分給甲、乙、丙3人,每人分得1個球.則事件“甲分得白球或乙分得白球”發(fā)生的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$f(x)=\frac{{\sqrt{1-{x^2}}}}{|x+3|-3}$,則f (x)( 。
A.是偶函數(shù),而非奇函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是奇函數(shù),而非偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過拋物線C:y2=2px(p>0)的焦點且斜率為2的直線與C交于A、B兩點,以AB為直徑的圓與C的準(zhǔn)線有公共點M,若點M的縱坐標(biāo)為2,則p的值為4.

查看答案和解析>>

同步練習(xí)冊答案