【題目】如圖,直三棱柱ABC﹣A1B1C1 , 底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別為A1B1、A1A的中點.

(1)求 >的值;
(2)求證:BN⊥平面C1MN;
(3)求點B1到平面C1MN的距離.

【答案】
(1)解:以CA所在直線為x軸,以CB所在直線為y軸,以CC1所在直線為z軸建立空間坐標系.

則A(1,0,0),B(0,1,0),A1 (1,0,2),B1 ( 0,1,2),C1(0,0,2),M( , ,2),

N(1,0,1),

=(1,﹣1,2), =( 0,1,2).

= = =


(2)證明:∵ =(1,﹣1,1), =( ,0), =(1,0,﹣1),

= +0=0, =1﹣0﹣1=0,∴

∴BN⊥平面C1MN.


(3)解:設點B1到平面C1MN的距離為h,∵VB1C1MN= ,

×( MNMC1 )h= ×( B1MC1M ) NA1,

×( )h= ×( )×1,∴h=


【解析】(1)建立空間坐標系,求出各個點的坐標,利用兩個向量的夾角公式求得 >的值.(2)由 =0, =0,得到 , ,從而得到BN⊥平面C1MN.(Ⅲ)設點B1到平面C1MN的距離為h,由VB1C1MN= ,解方程求得 h 值.
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, ,平面底面, 的中點, 是棱上的點, ,

(Ⅰ)求證:平面平面;

(Ⅱ)若三棱錐的體積是四棱錐體積的,設,試確定的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln(2x+1)+bx+1.
(1)若函數(shù)y=f(x)在x=1處取得極值,且曲線y=f(x)在點(0,f(0))處的切線與直線2x+y﹣3=0平行,求a的值;
(2)若 ,試討論函數(shù)y=f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某市的中學生中隨機調查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.

Ⅰ)求的值;

假設同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,估計該市中學生中的全體男生的平均身高;

(Ⅲ)從該市的中學生中隨機抽取一名男生,根據(jù)直方圖中的信息,估計其身高在180 cm 以上的概率.若從全市中學的男生(人數(shù)眾多)中隨機抽取人,用表示身高在以上的男生人數(shù),求隨機變量的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 是偶函數(shù),g(x)=t2x+4,
(1)求a的值;
(2)當t=﹣2時,求f(x)<g(x)的解集;
(3)若函數(shù)f(x)的圖象總在g(x)的圖象上方,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=f(x)是定義域為R的偶函數(shù),當x≥0時,f(x)= ,若關于x的方程[f(x)]2+af(x)+ =0,a∈R有且僅有8個不同實數(shù)根,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fn(x)= x3 (n+1)x2+x(n∈N*),數(shù)列{an}滿足an+1=f'n(an),a1=3.
(1)求a2 , a3 , a4;
(2)根據(jù)(1)猜想數(shù)列{an}的通項公式,并用數(shù)學歸納法證明;
(3)求證: + +…+

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn,數(shù)列{bn},{cn}滿足 (n+1) bnan+1,(n+2) cn,其中n∈N*.

(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項公式;

(2)若存在實數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2﹣2tx+2,其中 t∈R.
(1)若t=1,求函數(shù)f(x)在區(qū)間[0,4]上的取值范圍;
(2)若t=1,且對任意的x∈[a,a+2],都有f(x)<5,求實數(shù)a的取值范圍;
(3)若對任意的x1 , x2∈[0,4],都有f(x1)﹣f(x2)≤8,求t的取值范圍.

查看答案和解析>>

同步練習冊答案