分析 作出不等式組對應的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.
解答 解:作出不等式組對應的平面區(qū)域,
由z=x+2y,得y=$-\frac{1}{2}x+\frac{z}{2}$,平移直線y=$-\frac{1}{2}x+\frac{z}{2}$,由圖象可知當直線經(jīng)過點B時,
直線y=$-\frac{1}{2}x+\frac{z}{2}$的截距最小,此時z最小,
由$\left\{\begin{array}{l}{y=2x}\\{2x-5y-8=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,即B(-1,-2)
此時z=-1+2×(-2)=-5.
故答案為:-5.
點評 本題主要考查線性規(guī)劃的應用,利用圖象平行求得目標函數(shù)的最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問題中的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4+π | C. | 4+$\sqrt{2}$π | D. | 4+π+$\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
編號 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 70 | 81 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com