14.在△ABC中,點(diǎn)D在線段BC上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,點(diǎn)O在線段CD上(與點(diǎn)C,D不重合).若$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AC}$,則x的取值范圍是( 。
A.(0,1)B.($\frac{2}{3}$,1)C.(0,$\frac{1}{3}$)D.($\frac{1}{3}$,$\frac{2}{3}$)

分析 利用向量的運(yùn)算法則和共線定理即可得出.

解答 解:∵$\overrightarrow{AO}$=x$\overrightarrow{AB}$+(1-x)$\overrightarrow{AC}$=x($\overrightarrow{AB}$-$\overrightarrow{AC}$)+$\overrightarrow{AC}$,即$\overrightarrow{CO}$=x•$\overrightarrow{CB}$,
∴$\frac{|\overrightarrow{CO}|}{|\overrightarrow{CB}|}$=x,
∵$\overrightarrow{BD}$=2$\overrightarrow{DC}$,即$\overrightarrow{BC}$=3$\overrightarrow{DC}$,∴0<x<$\frac{|\overrightarrow{CD}|}{|\overrightarrow{CB}|}$=$\frac{1}{3}$,
∴x的取值范圍是(0,$\frac{1}{3}$),
故選:C.

點(diǎn)評(píng) 本題主要考查平面向量基本定理的應(yīng)用,熟練掌握向量的運(yùn)算法則和共線定理、模的運(yùn)算性質(zhì)等是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.復(fù)數(shù)z=-2+i,i是虛數(shù)單位,則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為( 。
A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.拋擲甲乙兩枚質(zhì)地均勻且四面上標(biāo)有1,2,3,4的正四面體,記落在桌面的底面上的數(shù)字分別為x,y,則$\frac{x}{y}$為整數(shù)的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=3sin(2x-$\frac{π}{3}$)的圖象作以下哪個(gè)平移得到函數(shù)y=3sin2x的圖象( 。
A.向左平移$\frac{π}{3}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{3}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若函數(shù)y=f(x)對(duì)任意x1,x2∈(0,1],都有$|f({x_1})-f({x_2})|≤π|\frac{1}{x_1}-\frac{1}{x_2}|$,則稱函數(shù)y=f(x)是“以π為界的類斜率函數(shù)”.
(I)試判斷函數(shù)y=$\frac{π}{x}$是否為“以π為界的類斜率函數(shù)”;
(Ⅱ)若實(shí)數(shù)a>0,且函數(shù)f(x)=$\frac{1}{2}$x2+x+alnx是“以π為界的類斜率函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.學(xué)校擬進(jìn)行一次活動(dòng),對(duì)此,新聞媒體進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“保留”和“不支持”態(tài)度的人數(shù)如表所示
支持保留不支持
20歲以下800450200
20歲以上(含20歲)100150300
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“不支持”態(tài)度的人中抽取了25人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個(gè)總體,從這5人中任意選取2人,求至少有1人年齡在20歲以上的概率;
(Ⅲ)在接受調(diào)查的人中,有8人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取1個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)0.6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若純虛數(shù)Z滿足(1-i)z=1+ai,則實(shí)數(shù)a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,
(1)當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
①零;
②純虛數(shù);
③z=2+5i.
(2)若在復(fù)平面C內(nèi),z所對(duì)應(yīng)的點(diǎn)在第四象限,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案