分析 (Ⅰ)消去參數(shù)α得曲線C1的普通方程,將曲線C2化為直角坐標(biāo)方程,兩式作差得直線AB的方程,則直線AB的斜率可求;
(Ⅱ)由C1方程可知曲線是以C1(1,0)為圓心,半徑為1的圓,由C2方程可知曲線是以C2(0,2)為圓心,半徑為2的圓,又|AB|≤|AC1|+|C1C2|+|BC2|,可知當(dāng)|AB|取最大值時(shí),圓心C1,C2在直線AB上,進(jìn)一步求出直線AB(即直線C1C2)的方程,再求出O到直線AB的距離,則△AOB的面積可求.
解答 解:(Ⅰ)消去參數(shù)α得曲線C1的普通方程C1:x2+y2-2x=0.…(1)
將曲線C2:ρ=4sinθ化為直角坐標(biāo)方程得x2+y2-4y=0.…(2)
由(1)-(2)得4y-2x=0,即為直線AB的方程,故直線AB的斜率為$\frac{1}{2}$;
(Ⅱ)由C1:(x-1)2+y2=1知曲線C1是以C1(1,0)為圓心,半徑為1的圓,
由C2:x2+(y-2)2=4知曲線C2:是以C2(0,2)為圓心,半徑為2的圓.
∵|AB|≤|AC1|+|C1C2|+|BC2|,
∴當(dāng)|AB|取最大值時(shí),圓心C1,C2在直線AB上,
∴直線AB(即直線C1C2)的方程為:2x+y=2.
∵O到直線AB的距離為$d=\frac{2}{{\sqrt{5}}}=\frac{2}{5}\sqrt{5}$,
又此時(shí)|AB|=|C1C2|+1+2=3+$\sqrt{5}$,
∴△AOB的面積為$S=\frac{1}{2}•\frac{2}{5}\sqrt{5}•(3+\sqrt{5})=\frac{{3\sqrt{5}}}{5}+1$.
點(diǎn)評(píng) 本題考查了簡(jiǎn)單曲線的極坐標(biāo)方程以及參數(shù)方程化成普通方程,考查了直線與圓的位置關(guān)系,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\sqrt{2},2}]$ | B. | $({1,\sqrt{2}}]$ | C. | $({\sqrt{2},+∞})$ | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{9}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com