14.為了研究子女與父母吸煙的關(guān)系,調(diào)查了一千多名青少年及其家長(zhǎng),數(shù)據(jù)如下:
父母吸煙父母不吸煙總計(jì)
子女吸煙23783
子女不吸煙678
總計(jì)1520
完善上表,并分別利用等高條形圖和獨(dú)立性檢驗(yàn)方法判斷父母吸煙對(duì)子女吸煙是否有影響?

分析 補(bǔ)充列聯(lián)表,可得等高條形圖,計(jì)算KK2,即可得出結(jié)論

解答 解:

父母吸煙父母不吸煙總計(jì)
子女吸煙23783320
子女不吸煙6785221200
總計(jì)9156051520

由圖形觀察:底面副對(duì)角線上兩個(gè)柱體高度的乘積要大一些,因此可以在某種程度上認(rèn)為“子女吸煙與父母吸煙有關(guān)”.?
由列聯(lián)表中的數(shù)據(jù)得到?
K2=$\frac{1520×(237×522-83×678)^{2}}{915×605×320×1200}$≈32.52>6.635.?
所以在犯錯(cuò)的概率不超過0.001的前提下,認(rèn)為兩者有關(guān)系.

點(diǎn)評(píng) 獨(dú)立性檢驗(yàn)的應(yīng)用的步驟為:根據(jù)已知條件將數(shù)據(jù)歸結(jié)到一個(gè)表格內(nèi),列出列聯(lián)表,再根據(jù)列聯(lián)表中的數(shù)據(jù),代入公式計(jì)算出k值,然后代入離散系數(shù)表,比較即可得到答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)非零向量,則下列命題為真命題的是
①若$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角60°;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在非零實(shí)數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
④若存在非零實(shí)數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$,則|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$;
⑤若$\overrightarrow{a}$與$\overrightarrow$共線且同向,則|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|.
其中的正確的結(jié)論是③⑤(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx+$\frac{1}{2}a$x2-(a+1)x(a∈R).
(I)a=1時(shí),求函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)y=f(x)在區(qū)間[1.e]上的最小值為-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x<1\\ f(x-1),x≥1\end{array}\right.$,則f(log25)=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知z∈C,且|z+3-4i|=1,則|z|的最大值為6,最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈R,則f(x)的最大值為$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知a=1,且(1-b)(sinA+sinB)=(c-b)sinC,則△ABC周長(zhǎng)的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知圓錐的底面半徑為1,母線長(zhǎng)與底面的直徑相等,則該圓錐的體積為$\frac{{\sqrt{3}π}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的各項(xiàng)均為正數(shù),觀察程序框圖,若k=1,k=5時(shí),分別有S=$\frac{1}{3}$和S=$\frac{5}{11}$.
(1)試求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=3n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案