11.棱長為a的正方體ABCD-A1B1C1D1中,若與D1B平行的平面截正方體所得的截面面積為S,則S的取值范圍是(0,$\frac{\sqrt{6}}{2}{a}^{2}$).

分析 根據(jù)題意,取AA1與CC1的中點M和N,得出四邊形MBND1的面積S,從而得出與D1B平行的平面截正方體所得截面面積S的取值范圍.

解答 解:根據(jù)題意,取AA1的中點M,CC1的中點N,
連接D1M、MB、BN、ND1,如圖所示;
則MN⊥BD1,
又AB=a,∴MN=$\sqrt{2}a$,BD1=$\sqrt{3}a$,
∴四邊形MBND1的面積為S=$\frac{1}{2}$•MN•BD1=$\frac{1}{2}$×$\sqrt{2}$a×$\sqrt{3}$a=$\frac{\sqrt{6}}{2}{a}^{2}$.
∴與D1B平行的平面截正方體所得截面面積S的取值范圍是(0,$\frac{\sqrt{6}}{2}{a}^{2}$).
故答案為:(0,$\frac{\sqrt{6}}{2}{a}^{2}$).

點評 本題考查棱柱的結(jié)構(gòu)特征,考查了空間中的位置關(guān)系的應(yīng)用問題,體現(xiàn)了轉(zhuǎn)化思想的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在平面直角坐標(biāo)系xOy中,已知過點A(0,2)的直線與拋物線C:x2=2py(p>0)相交于兩點M,N,與直線y=-2相交于點P(M位于A,P之間),直線OM平分∠POA.
(1)求拋物線C的方程;
(2)若拋物線C在Q點處的切線為l0,當(dāng)點A到直線l0的距離最小時,求直線l0的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點A是拋物線C:x2=2py(p>0)上一點,O為坐標(biāo)原點,若A,B是以點M(0,10)為圓心,|OA|的長為半徑的圓與拋物線C的兩個公共點,且△ABO為等邊三角形,則p的值是$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,某城市有一個五邊形的地下污水管通道ABCDE,四邊形BCDE是矩形,其中CD=8km,BC=3km;△ABE是以BE為底邊的等腰三角形,AB=5km.現(xiàn)欲在BE的中間點P處建地下污水處理中心,為此要過點P建一個“直線型”的地下水通道MN接通主管道,其中接口處M點在矩形BCDE的邊BC或CD上.
(1)若點M在邊BC上,設(shè)∠BPM=θ,用θ表示BM和NE的長;
(2)點M設(shè)置在哪些地方,能使點M,N平分主通道ABCDE的周長?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A,B是橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左,右頂點,F(xiàn)為其右焦點,在直線x=4上任取一點P(點P不在x軸上),連結(jié)PA,PF,PB.若半焦距c=1,且2kPF=kPA+kPB
(1)求橢圓C的方程;
(2)若直線PF交橢圓于M,N,記△AMB、△ANB的面積分別為S1、S2,求$\frac{S_1}{S_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)m=$\sqrt{6}$-$\sqrt{5}$,n=$\sqrt{7}$-$\sqrt{6}$,p=$\sqrt{8}$-$\sqrt{7}$,則m,n,p的大小順序為( 。
A.m>p>nB.p>n>mC.n>m>pD.m>n>p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個焦點F1,F(xiàn)2,且橢圓過點(0,$\sqrt{3}}$),(${\sqrt{3}$,-$\frac{{\sqrt{6}}}{2}}$),且A是橢圓上位于第一象限的點,且△AF1F2的面積S${\;}_{△A{F_1}{F_2}}}$=$\sqrt{3}$.
(1)求點A的坐標(biāo);
(2)過點B(3,0)的直線l與橢圓E相交于點P,Q,直線AP,AQ與x軸相交于M,N兩點,點C(${\frac{5}{2}$,0),則$\overrightarrow{CM}$•$\overrightarrow{CN}$是否為定值,如果是定值,求出這個定值,如果不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函象y=f(x)的圖象與函數(shù)y=ax(a>0且a≠1)的圖象關(guān)于直線y=x對稱,記g(x)=f(x)[f(x)+2f(2)-1],若y=g(x)在區(qū)間[$\frac{1}{2}$,2]上是增函數(shù),則實數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若Ax+By+5<0表示的區(qū)域不包括點(2,4),λ=A+2B,則λ的取值范圍是[$-\frac{5}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案