分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于a的方程,求出a的值即可;
(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(3)分別求出f(x)和g(x)的切線,從而判定f(x)和g(x)的公切線即可.
解答 解:(1)因?yàn)閒'(x)=3ax2+6x-6a,
所以f'(-1)=0,
即3a-6-6a=0,所以a=-2.
(2)由(1)有f(x)=-2x3+3x2+12x-11,
則f'(x)=-6x2+6x+12=-6(x-2)(x+1),
x | (-∞,-1) | (-1,2) | (2,+∞) |
f'(x) | - | + | - |
f(x) |
點(diǎn)評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用問題,是一道綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x=-2k+1,k∈z} | B. | {x|x=2k-1,k∈z} | C. | {x|x=-2k-1,k∈z} | D. | {x|x=2k,k∈z} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{22}{3}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{22}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com