分析 (1)利用二項(xiàng)展開(kāi)式的通項(xiàng)公式以及a3=-$\frac{1}{2}$,求得n的值.
(2)利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,根據(jù)|ak|最大,求得k的值.
(3)要證|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,只要即證${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立,用數(shù)學(xué)歸納法證得不等式成立.
解答 (1)若a3=-$\frac{1}{2}$,則${C}_{2n}^{3}$•${(-\frac{1}{2})}^{3}$=-$\frac{1}{2}$,∴2n3-3n2+n-6=0,
所以(n-2)(2n2+n+3)=0,所n=2.
(2)當(dāng)n=5時(shí),(1-$\frac{x}{2}$)10=a0+a1x+a2x2+…+a10x10 ,其中ai=${C}_{10}^{i}$•${(-\frac{1}{2})}^{i}$.
假設(shè)系數(shù)|ak|最大,則有$\left\{\begin{array}{l}{{C}_{10}^{k}{{•(\frac{1}{2})}^{k}≥C}_{10}^{k+1}{•(\frac{1}{2})}^{k+1}}\\{{C}_{10}^{k}{{•(\frac{1}{2})}^{k}≥C}_{10}^{k-1}{•(\frac{1}{2})}^{k-1}}\end{array}\right.$,解得$\frac{8}{3}$≤k≤$\frac{11}{3}$,∴k=3,
所以a3=${C}_{10}^{3}$•${(-\frac{1}{2})}^{3}$=-15最小,a2=${C}_{10}^{2}$•${(-\frac{1}{2})}^{2}$=$\frac{45}{4}$,a4=${C}_{10}^{4}$•${(-\frac{1}{2})}^{4}$=$\frac{105}{8}$>a2,
所以a4最大.
(3)因?yàn)閍n=${C}_{2n}^{n}$•${(-\frac{1}{2})}^{n}$,所以|an|=${C}_{2n}^{n}$•${(\frac{1}{2})}^{n}$,
所以要證|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,
只要證:${C}_{2n}^{n}$•${(\frac{1}{2})}^{n}$<$\frac{{2}^{n}}{\sqrt{2n+1}}$,即證${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立.
當(dāng)n=1時(shí),左邊=${C}_{2}^{1}$=2,右邊=$\frac{4}{\sqrt{3}}$>2,所以左邊<右邊成立;
假設(shè)當(dāng)n=k時(shí),${C}_{2k}^{k}$<$\frac{{4}^{k}}{\sqrt{2k+1}}$成立,
則當(dāng)n=k+1時(shí),${C}_{2k+2}^{k+1}$=$\frac{(2k+2)!}{(k+1)!•(k+1)!}$=$\frac{(2k+2)•(2k+1)•(2k)!}{{(k+1)}^{2}•k!•k!}$<$\frac{2(2k+1)}{k+1}$•$\frac{{4}^{k}}{\sqrt{2k+1}}$
=$\frac{\sqrt{2k+1}{•4}^{k+1}}{\sqrt{{4k}^{2}+8k+4}}$<$\frac{\sqrt{2k+1}{•4}^{k+1}}{\sqrt{{4k}^{2}+8k+3}}$=$\frac{{4}^{k+1}}{\sqrt{2k+3}}$=$\frac{{4}^{k+1}}{\sqrt{2(k+1)+1}}$.
所以當(dāng)n=k+1時(shí),不等式也成立,
則 ${C}_{2n}^{n}$<$\frac{{4}^{n}}{\sqrt{2n+1}}$成立,即|an|<$\frac{{2}^{n}}{\sqrt{2n+1}}$,成立.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,用數(shù)學(xué)歸納法證明不等式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com