分析 根據(jù)向量垂直得($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=0,求出$\overrightarrow{a}•\overrightarrow$,代入向量的夾角公式計算即可.
解答 解:∵($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}•\overrightarrow$=0,
∴$\overrightarrow{a}•\overrightarrow$=${\overrightarrow{a}}^{2}$=4.
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{1}{2}$,
∴<$\overrightarrow{a},\overrightarrow$>=60°,
故答案為:60°.
點評 本題考查了平面向量的數(shù)量積運算,向量垂直與數(shù)量積的關系,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com