函數(shù)f(x)=sinxsin(
π
2
+x)-x的零點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:分別令y=
1
2
sin2x,y=x,畫(huà)出函數(shù)的圖象,從而得到答案.
解答: 解:f(x)=
1
2
sin2x-x,
令y=
1
2
sin2x,y=x,
畫(huà)出函數(shù)的圖象,如圖示:

圖象有1個(gè)交點(diǎn),
故函數(shù)f(x)有1個(gè)零點(diǎn),
故選:B.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)問(wèn)題,考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-m)2e
x
m

(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(0,+∞),都有f(x)≤
1
49e3
,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
3
,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)斜率為k的直線l交橢圓于A、B兩點(diǎn),其中A點(diǎn)為橢圓的左頂點(diǎn),若橢圓的上頂點(diǎn)P始終在以AB為直徑的圓內(nèi),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)分類(lèi)變量X和Y,值域分別為{x1,x2}和{y1,y2},其樣本頻數(shù)分別是a=10,b=21.c+d=35,若判斷變量X和Y有關(guān)錯(cuò)誤頻率不超過(guò)25%,則c等于( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
x-[x],x≥0
f(x+1),x<0
,其中[x]表示不超過(guò)x的最大整數(shù),如[-1.2]=-2,[1.2]=1,[1]=1,若直線ky=x+1(k>0)與函數(shù)y=f(x)的圖象恰有兩個(gè)不同的交點(diǎn),則k的取值范圍是(  )
A、[2,3)
B、[3,∞)
C、[2,3]
D、(2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=-2asinx+2a+b,x∈[-
3
,
π
3
],是否存在常數(shù)a,b∈Q,使得函數(shù)f(x)的值域?yàn)閧y|-3≤y≤
3
-1},若存在,求出a,b的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
x
x+1
在x=-2處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,已知奇數(shù)項(xiàng)依次排列構(gòu)成等差數(shù)列,偶數(shù)項(xiàng)依次排列構(gòu)成等比數(shù)列,a1=1,a2=2,a8=16,且a8是a15和a17的等差中相項(xiàng),求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin
x
2
+cos
x
2
=
1
4
,則sinx=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案