分析 (1)求導數(shù),利用f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值,可得f′(-$\frac{4}{3}$)=0,即可確定a的值;
(2)由(1)得g(x)=($\frac{1}{2}$x3+x2)ex,利用導數(shù)的正負可得g(x)的單調(diào)性.
解答 解:(1)對f(x)求導得f′(x)=3ax2+2x.
∵f(x)=ax3+x2(a∈R)在x=-$\frac{4}{3}$處取得極值,
∴f′(-$\frac{4}{3}$)=0,
∴3a•$\frac{16}{9}$+2•(-$\frac{4}{3}$)=0,
∴a=$\frac{1}{2}$;
(2)由(2)得g(x)=($\frac{1}{2}$x3+x2)ex,
∴g′(x)=($\frac{3}{2}$x2+2x)ex+($\frac{1}{2}$x3+x2)ex=$\frac{1}{2}$x(x+1)(x+4)ex,
令g′(x)=0,解得x=0,x=-1或x=-4,
當x<-4時,g′(x)<0,故g(x)為減函數(shù);
當-4<x<-1時,g′(x)>0,故g(x)為增函數(shù);
當-1<x<0時,g′(x)<0,故g(x)為減函數(shù);
當x>0時,g′(x)>0,故g(x)為增函數(shù);
綜上知g(x)在(-∞,-4)和(-1,0)內(nèi)為減函數(shù),在(-4,-1)和(0,+∞)內(nèi)為增函數(shù).
點評 本題考查導數(shù)的運用:求單調(diào)區(qū)間和極值,考查分類討論的思想方法,以及函數(shù)和方程的轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 橫坐標伸長到原來的2倍,再向左平行移動$\frac{π}{3}$個單位長度 | |
B. | 橫坐標縮短到原來的$\frac{1}{2}$倍,再向左平行移動$\frac{π}{3}$個單位長度 | |
C. | 橫坐標縮短到原來的$\frac{1}{2}$倍,再向左平行移動$\frac{π}{6}$個單位長度 | |
D. | 橫坐標縮短到原來的$\frac{1}{2}$倍,再向右平行移動$\frac{π}{6}$個單位長度 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\stackrel{∧}{y}$=0.4x+2.3 | B. | $\stackrel{∧}{y}$=2x-2.4 | C. | $\stackrel{∧}{y}$=-2x+9.5 | D. | $\stackrel{∧}{y}$=-0.4x+4.4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 31009-2 | B. | 2×31007 | C. | $\frac{{3}^{2104}-1}{2}$ | D. | $\frac{{3}^{2014}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com