【題目】如圖,的直徑,點(diǎn)B上與A,C不重合的動(dòng)點(diǎn),平面.

1)當(dāng)點(diǎn)B在什么位置時(shí),平面平面,并證明之;

2)請(qǐng)判斷,當(dāng)點(diǎn)B上運(yùn)動(dòng)時(shí),會(huì)不會(huì)使得,若存在這樣的點(diǎn)B,請(qǐng)確定點(diǎn)B的位置,若不存在,請(qǐng)說(shuō)明理由.

【答案】1)當(dāng)時(shí),平面平面,證明見(jiàn)解析,(2)不存點(diǎn)B使得,理由見(jiàn)解析

【解析】

(1)由題可推出平面平面,時(shí),即可推出平面,進(jìn)而得出結(jié)論;

(2)假設(shè)存在點(diǎn)滿足題意,即可推出平面,進(jìn)而有,又由題可推得,為銳角,這與矛盾,故不存點(diǎn)B使得.

(1)當(dāng)時(shí),平面平面,證明如下:

平面,平面,

平面平面,

,平面平面,

平面,

平面,

∴平面平面;

(2)假設(shè)存在點(diǎn)B,使得,

點(diǎn)B上的動(dòng)點(diǎn),

,

,平面,,

平面,

平面,

,

設(shè),

,,

,,

可得,為銳角,這與矛盾,

故不存點(diǎn)B使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一條直線與一個(gè)平面垂直,則稱(chēng)此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古代以六十年為一個(gè)甲子用十天干和十二地支相配六十年輪一遍,周而復(fù)始。甲子為干支之一,順序?yàn)榈谝粋(gè)前一位是癸亥,后一位是乙丑論陰陽(yáng)五行,天干之甲屬陽(yáng)之木,地支之子屬陽(yáng)之水,是水生木相生,十干與十二支按順序兩兩相配,從甲子到癸亥,共六十個(gè)組合,稱(chēng)六十甲子.

問(wèn)題

12020年是己亥年,至少多少年后又是己亥年?

2)從一個(gè)已亥年到下一個(gè)己亥年,周期是多少?

3)計(jì)算i,,,…,一直計(jì)算下去,你會(huì)得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某港灣的平面示意圖如圖所示,、、分別是海岸線、上的三個(gè)集鎮(zhèn),位于的正南方向處,位于的北偏東方向.隨著經(jīng)濟(jì)的發(fā)展,為緩解集鎮(zhèn)的交通壓力,擬在海岸線上分別修建碼頭、,開(kāi)辟水上航線,勘測(cè)時(shí)發(fā)現(xiàn):以為圓心,為半徑的扇形區(qū)域?yàn)闇\水區(qū),不適宜船只航行.

1)能否求出集鎮(zhèn)、間的直線距離?

2)根據(jù)勘測(cè)要求,要使、之間的直線航線最短,直線與圓應(yīng)滿足什么關(guān)系?

3)應(yīng)怎樣確定碼頭、的位置,才能使得、之間的直線航線最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1,2,···,n的排列的個(gè)數(shù),使得對(duì)正整數(shù)k=1,2,···,n成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知圓O和點(diǎn),由圓O外一點(diǎn)P向圓O引切線,Q為切點(diǎn),且有 .

1)求點(diǎn)P的軌跡方程,并說(shuō)明點(diǎn)P的軌跡是什么樣的幾何圖形?

2)求的最小值;

3)以P為圓心作圓,使它與圓O有公共點(diǎn),試在其中求出半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E ,對(duì)于任意實(shí)數(shù)k,下列直線被橢圓E截得的弦長(zhǎng)與lykx1被橢圓E截得的弦長(zhǎng)不可能相等的是(  )

A. kxyk0 B. kxy10

C. kxyk0 D. kxy20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示的等邊三角形的邊長(zhǎng)為,邊上的高,,分別是邊的中點(diǎn)現(xiàn)將沿折疊,使平面平面,如圖②所示.

① ②

1)試判斷折疊后直線與平面的位置關(guān)系,并說(shuō)明理由;

2)求四面體外接球的體積與四棱錐的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),圓.

1)若直線過(guò)點(diǎn)且到圓心的距離為,求直線的方程;

2)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)(的斜率為負(fù)),當(dāng)時(shí),求以線段為直徑的圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案