3.已知$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3,則t=6.

分析 根據(jù)投影的定義即可求出.

解答 解:∵$\overrightarrow a$=(3,-4),$\overrightarrow b$=(3,t),
∴$\overrightarrow a$•$\overrightarrow b$=9-4t,|$\overrightarrow a$|=5,
∵向量$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3,
∴$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|}$=$\frac{9-4t}{5}$=-3,
解得t=6,
故答案為:6

點評 本題考查向量的投影,涉及數(shù)量積和模長公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l:mx-y=1,若直線l與直線x+m(m-1)y=2垂直,則m的值為0或2,動直線l被圓C:x2-2x+y2-8=0截得的最短弦長為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將下列式子進行合一變形.
(1)$\sqrt{3}$sinx+cosx=2sin(x+$\frac{π}{6}$);
(2)sinx-$\sqrt{3}$cosx=2sin(x-$\frac{π}{3}$);
(3)sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知n>0,求證:3n+$\frac{4}{{n}^{2}}$≥3$\root{3}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a、b、c為正數(shù),求證:$\frac{{a}^{2}}$+$\frac{^{2}}{c}$+$\frac{{c}^{2}}{a}$≥$\sqrt{ab}$+$\sqrt{bc}$+$\sqrt{ac}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}的前5項之和為15,則${2^{{a_2}+{a_4}}}$=( 。
A.16B.8C.64D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合P={x|x(x-2)<0,且x∈Z},Q={x|x2-3x+2=0},則P∩Q=( 。
A.PB.QC.{2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.?dāng)?shù)列{an}的前n項和為An=n2+bn,數(shù)列{bn}是等比數(shù)列,公比q>0,且滿足a1=b1=2,b2,a3,b3成等差數(shù)列;
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=bn+$\frac{1}{A_n}$,求cn的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,正方形ABCD所在平面與直角三角形ABE所在的平面相互垂直,AE⊥AB,設(shè)M,N分別是DE,AB的中點,已知AB=2,AE=1.
(1)求證:MN∥平面BEC;
(2)求三棱錐N-BCE的體積.

查看答案和解析>>

同步練習(xí)冊答案