分析 由已知利用等差數(shù)列的前n項和公式列出方程組,由此能求出首項和公差,從而能求出通項公式.
解答 解:∵等差數(shù)列{an}的前n項和為Sn,且S5=25,S6=36,
∴$\left\{\begin{array}{l}{5{a}_{1}+\frac{5×4}{2}d=25}\\{6{a}_{1}+\frac{6×5}{2}d=36}\end{array}\right.$,解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
故答案為:2n-1.
點評 本題考查等差數(shù)列的通項公式的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | (?p)∧(?q) | D. | (?p)∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6}{5}$或$\frac{5}{6}$ | B. | $\frac{5}{4}$或$\frac{4}{5}$ | C. | $\frac{3}{2}$或$\frac{2}{3}$ | D. | $\frac{4}{3}$或$\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 720 | B. | 648 | C. | 103 | D. | 310 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com