已知點(diǎn)P(sinα+cosα,tanα)在第四象限,則角α的取值范圍是
 
考點(diǎn):三角函數(shù)值的符號(hào)
專(zhuān)題:三角函數(shù)的求值
分析:由點(diǎn)P的橫坐標(biāo)大于0且縱坐標(biāo)小于0解三角不等式求解α的范圍.
解答: 解:∵點(diǎn)P(sinα+cosα,tanα)在第四象限,
sinα+cosα>0
tanα<0
,
由sinα+cosα=
2
sin(α+
π
4
)>0
,
得2kπ<α+
π
4
<2kπ+π
,k∈Z,
2kπ-
π
4
<α<2kπ+
4
,k∈Z

由tanα<0,得kπ+
π
2
<α<kπ+π,k∈Z.
2kπ+
π
2
<α<2kπ+
4
2kπ-
π
4
<α<2kπ,k∈Z

故答案為:2kπ+
π
2
<α<2kπ+
4
2kπ-
π
4
<α<2kπ,k∈Z
點(diǎn)評(píng):本題考查了三角函數(shù)的符號(hào),考查了三角不等式的解法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=lg(ax-k•2x)(a>0且a≠2)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:關(guān)于xd的不等式x2+2ax+4>0,對(duì)一切x∈R恒成立,q:指數(shù)函數(shù)f(x)=ax是減函數(shù),若p或q為真,p且q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①?gòu)膭蛩賯鬟f的產(chǎn)品生產(chǎn)流水線(xiàn)上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;
②樣本方差反映了樣本數(shù)據(jù)與樣本平均值的偏離程度;
③在回歸分析模型中,殘差平方和越小,說(shuō)明模型的擬合效果越好;
④在回歸直線(xiàn)方程
^y
=0.1x+10中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量
^y
增加0.1個(gè)單位.
其中正確命題的個(gè)數(shù)是
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<α<
π
2
,tan
α
2
+
1
tan
α
2
=
5
2
,試求sin(α-
π
3
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的一段圖象如圖所示,且函數(shù)過(guò)點(diǎn)(0,1)
(1)求函數(shù)f1(x)的解析式;
(2)將函數(shù)y=f1(x)的圖象向右平移
π
4
個(gè)單位長(zhǎng)度,得到函數(shù)y=f2(x),求y=f1(x)+f2(x)的最大值,并求此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ=
1
3
,tanθ<0,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1≤x≤1},B={x|x2-2x≤0},則A∩(∁RB)=(  )
A、[-1,0)
B、[-1,0]
C、[0,1]
D、(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=3,求:
(1)
a
b
;
(2)|
a
+
b
|.

查看答案和解析>>

同步練習(xí)冊(cè)答案