已知a=3 
1
2
,b=log3
1
2
,c=log 
1
3
1
2
,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a
考點:對數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性即可得出.
解答: 解:∵a=3 
1
2
>1,b=log3
1
2
<0,c=log 
1
3
1
2
=log32,則0<c<1.
∴a>c>b.
故選:B.
點評:本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin2242°+tan2(-64°)cot45°•
1
tan2244°
+cos2782°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-y2=m2(m>0),直線l過C的一個焦點,且垂直于x軸,直線l與雙曲線C交于A,B兩點,則
|AB|
2m
等于( 。
A、1
B、
2
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意復(fù)數(shù)z=x+yi(x,y∈R),i為虛數(shù)單位,則下列結(jié)論正確的是( 。
A、|z-
.
z
|=2y
B、z2=x2+y2
C、|z+
.
z
|=2|x|
D、z
.
z
=z2-y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan(-210°)=( 。
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:2(lg
2
2+lg
2
•lg5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:“對任意的x∈R,x3-x2+1≤0”的否定是( 。
A、不存在x∈R,x3-x2+1≤0
B、存在x0∈R,x03-x02+1>0
C、存在x0∈R,x03-x02+1≤0
D、對任意的x∈R,x3-x2+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=logx-2(x2-4x-21)的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等比數(shù)列{an}的前n項和,且32a2+a7=0,則
S5
S2
=( 。
A、11B、5C、-8D、-11

查看答案和解析>>

同步練習(xí)冊答案