【題目】一些選手參加數(shù)學(xué)競賽,其中有些選手互相認(rèn)識,有些選手互相不認(rèn)識,而任何兩個不相識的選手都恰有兩個共同的熟人.若認(rèn)識,但沒有共同的熟人,求證:、認(rèn)識的熟人一樣多.

【答案】見解析

【解析】

用點表示人,兩人互相認(rèn)識就在相應(yīng)兩點間連一條線段,依題意間有連線(如圖).

由于、沒有共同的熟人,故凡認(rèn)識的人就不認(rèn)識,凡認(rèn)識的人就不認(rèn)識

現(xiàn)設(shè),,…,認(rèn)識,,…,認(rèn)識,由于任一不認(rèn)識,而任何兩個不相識的選手都恰有兩個共同的熟人,故有且僅有一個共同的熟人

反之,每一個有且僅有一個共同的熟人

亦即每一必與某一有連線,每一也必與某一有連線.

現(xiàn)設(shè)認(rèn)識,認(rèn)識,下面證明不相同時,也不相同.

若不然,重合,則、均有連線,從而互不認(rèn)識的,共同認(rèn)識3個人,(如圖),與已知條件恰有兩個共同的熟人矛盾,可見,

同理,,不相同時,其對應(yīng)的,也不相同,又得

從而.這表明、認(rèn)識的熟人一樣多.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

1)請畫出表中數(shù)據(jù)的散點圖;

2)請根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

3)根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗多少噸標(biāo)準(zhǔn)煤?

(附:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),若存在,使得不等式成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為O為坐標(biāo)原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于PQ兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個年級共名學(xué)生同時參與了我運動,我健康,我快樂的跳繩、踢毽等系列體育健身活動.為了了解學(xué)生的運動狀況,采用分層抽樣的方法從高一、高二兩個年級的學(xué)生中分別抽取名和名學(xué)生進(jìn)行測試.下表是高二年級的名學(xué)生的測試數(shù)據(jù)(單位:個/分鐘):

學(xué)生編號

1

2

3

4

5

跳繩個數(shù)

179

181

168

177

183

踢毽個數(shù)

85

78

79

72

80

1)求高一、高二兩個年級各有多少人?

2)設(shè)某學(xué)生跳繩/分鐘,踢毽/分鐘.當(dāng),且時,稱該學(xué)生為運動達(dá)人”.

①從高二年級的學(xué)生中任選一人,試估計該學(xué)生為運動達(dá)人的概率;

②從高二年級抽出的上述名學(xué)生中,隨機(jī)抽取人,求抽取的名學(xué)生中為span>運動達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李莊村某社區(qū)電費收取有以下兩種方案供農(nóng)戶選擇:

方案一每戶每月收管理費2元,月用電不超過30度,每度0.4元,超過30度時,超過部分按每度0.5.

方案二不收管理費,每度0.48.

1求方案一收費元與用電量(度)間的函數(shù)關(guān)系;

2小李家九月份按方案一交費34元,問小李家該月用電多少度?

3)小李家月用電量在什么范圍時,選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量, ,設(shè)函數(shù),且的圖象過點和點.

(Ⅰ)求的值;

(Ⅱ)將的圖象向左平移)個單位后得到函數(shù)的圖象.若的圖象上各最高點到點的距離的最小值為1,求的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對車輛實施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:

(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線性回歸方程。

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?

注:回歸方程中斜率和截距最小二乘估計公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點為A,直線l經(jīng)過Ω在y軸正半軸上的頂點B且與直線OA(O為坐標(biāo)原點)垂直,l與Ω的另一個交點為C,l與W交于M,N兩點.

(1)求W的標(biāo)準(zhǔn)方程:

(2)求

查看答案和解析>>

同步練習(xí)冊答案