3
-1
(2-|1-x|)dx=
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:原式轉(zhuǎn)化為
3
-1
(2-|1-x|)dx=
1
-1
(1+x)dx+
3
1
(3-x)dx,再根據(jù)定積分計(jì)算即可.
解答: 解:
3
-1
(2-|1-x|)dx=
1
-1
(1+x)dx+
3
1
(3-x)dx=(x+
1
2
x2)|
 
1
-1
 
+(3x-
1
2
x2)|
 
3
1
=2+2=4.
故答案為:4.
點(diǎn)評(píng):本題主要考查了定積分的計(jì)算,關(guān)鍵是去掉絕對(duì)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下命題:
①命題“存在x∈R,x2-x-2≥0”的否定是:“不存在x∈R,x2-x-2<0”;
②線性回歸直線
y
=
b
x+
a
恒過(guò)樣本中心(
.
x
,
y
),且至少過(guò)一個(gè)樣本點(diǎn).
③函數(shù)f(x)=e-x-ex圖象的切線斜率的最大值是-2;
④函數(shù)f(x)=x
1
3
-(
1
2
)x
的零點(diǎn)在區(qū)間(
1
3
,
1
2
)內(nèi);
其中正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(
1
3
)x2-3
<3-2x的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有下列結(jié)論:
①一度的角是周角的
1
360
,一弧度的角是周角的
1

②方程x2+y2-2x+2=0表示的是圓,圓心坐標(biāo)為(1,0);
③從總體中抽取的樣本(x1,y1),(x2,y2),…(xn,yn),若記
.
x
=
1
n
n
i=1
xi
.
y
=
1
n
n
i=1
yi,則回歸直線
y
=bx+a必過(guò)點(diǎn)(
.
x
,
.
y
);
④事件A的概率P(A)必有0<P(A)<1.
其中正確的結(jié)論序號(hào)是
 
(注:把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

arccos(-
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把12個(gè)人平均分成3個(gè)小組有
 
種不同的分法.(數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐曲線
x=3secθ
y=4tanθ
(θ為參數(shù))的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的可導(dǎo)函數(shù)f(x)滿足f(x+2)-f(x)=2f(1),y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,且當(dāng)x∈[2,4]時(shí),f(x)=x2+2xf′(2),則f(-
1
2
)與f(
16
3
)的大小關(guān)系是(  )
A、f(-
1
2
)=f(
16
3
B、f(-
1
2
)<f(
16
3
C、f(-
1
2
)>f(
16
3
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}{bn}的前n項(xiàng)和為Sn,Tn,若
Sn
Tn
=
n
n+1
,則
a5
b7
=(  )
A、
9
10
B、
9
14
C、
13
14
D、
13
11

查看答案和解析>>

同步練習(xí)冊(cè)答案