分析 利用拋物線的定義,將點(diǎn)P到其焦點(diǎn)的距離轉(zhuǎn)化為它到其準(zhǔn)線的距離即可.
解答 解:根據(jù)題意,設(shè)點(diǎn)P在其準(zhǔn)線x=-$\frac{1}{4}$上的射影為M,有拋物線的定義得:|PF|=|PM|,
∴欲使|PA|+|PF|取得最小值,就是使|PA|+|PM|最小,
∵|PA|+|PM|≥|AM|=$\frac{13}{4}$(當(dāng)且僅當(dāng)M,P,A三點(diǎn)共線時(shí)取“=”),
∴|PA|+|PF|取得最小值$\frac{13}{4}$時(shí)(M,P,A三點(diǎn)共線時(shí))點(diǎn)P的縱坐標(biāo)y0=-1,設(shè)其橫坐標(biāo)為x0,
∵P(x0,-1)為拋物線y2=x上的點(diǎn),
∴x0=1,
∴點(diǎn)P的坐標(biāo)為P(1,-1).
點(diǎn)評 本題考查拋物線的簡單性質(zhì),將點(diǎn)P到其焦點(diǎn)的距離轉(zhuǎn)化為它到其準(zhǔn)線的距離是關(guān)鍵,考查轉(zhuǎn)化思想的靈活應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x*y=x1y1+2x2y2 | B. | x*y=x1y1-x2y2 | C. | x*y=x1y1+x2y2+1 | D. | x*y=2x1x2+y1y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1或-2 | C. | -1或2 | D. | -1+$\sqrt{3}$或-1-$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com