【題目】已知函數(shù)().
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)當(dāng)時,是否存在正實數(shù),當(dāng)(是自然對數(shù)底數(shù))時,函數(shù)的最小值是3,若存在,求出的值;若不存在,說明理由;
【答案】(1)最大值是,最小值為;(2).
【解析】
試題分析:(1)先求出導(dǎo)函數(shù),在求出的單調(diào)區(qū)間,進而求得極大值與極小值,比較端點值可得最大值與最小值;(2)當(dāng)時,分三種情況討論函數(shù)的單調(diào)性,進而求出函數(shù)的最小值(用表示),令其等于即可求出的值.
試題解析: (1)當(dāng)時,,且,
.
得時;時,
所以函數(shù)在上單調(diào)遞增;,函數(shù)在上單調(diào)遞減,
所以函數(shù)在區(qū)間僅有極大值點,故這個極大值點也是最大值點,
故函數(shù)在最大值是,
又,故,
故函數(shù)在上的最小值為.
(2)
(ⅰ)
(ⅱ)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點為,,離心率為,點,在橢圓上,在線段上,且的周長等于.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過圓上任意一點作橢圓的兩條切線和與圓交于點,,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校一個生物興趣小組對學(xué)校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
(月) | |||||
(千克) |
(1)在給出的坐標(biāo)系中,畫出關(guān)于x、y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量關(guān)于變量的線性回歸直線方程.
(3)預(yù)測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克).
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.給出下列命題:
①函數(shù)y=sinx具有“P(a)性質(zhì)”;
②若奇函數(shù)y=f(x)具有“P(2)性質(zhì)”,且f(1)=1,則f(2015)=1;
③若函數(shù)y=f(x)具有“P(4)性質(zhì)”,圖象關(guān)于點(1,0)成中心對稱,且在(﹣1,0)上單調(diào)遞減,則y=f(x)在(﹣2,﹣1)上單調(diào)遞減,在(1,2)上單調(diào)遞增;
④若不恒為零的函數(shù)y=f(x)同時具有“P(0)性質(zhì)”和“P(3)性質(zhì)”,函數(shù)y=f(x)是周期函數(shù).
其中正確的是 (寫出所有正確命題的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英州市育才中學(xué)對全體教師在教學(xué)中是否經(jīng)常使用信息技術(shù)實施教學(xué)的情況進行了調(diào)查得到統(tǒng)計數(shù)據(jù)如下(表)
教師教齡 | 年以下 | 年至年 | 年至年 | 年及以上 |
教師人數(shù) | ||||
經(jīng)常使用信息技術(shù)實施教學(xué)的人數(shù) |
(1)求該校教師在教學(xué)中不經(jīng)常使用信息技術(shù)實施教學(xué)的概率;
(2)在教齡年以下,且經(jīng)常使用信息技術(shù)教學(xué)的教師中任選人,其中恰有一人教齡在年以下的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,橢圓過點,直線交軸于,且,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點,過點分別作直線交橢圓于兩點,設(shè)這兩條直線的斜率分別為,且,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),(1)求的值;(2)判斷并證明函數(shù)的單調(diào)性;(3)是否存在這樣的實數(shù),使對一切恒成立,若存在,試求出取值的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為零的等差數(shù)列中,已知,且依次成等比數(shù)列.數(shù)列滿足,且.
(1)求數(shù)列, 的通項公式;
(2)求數(shù)列的前項和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線上點處的切線過點,求函數(shù)的單調(diào)減區(qū)間;
(2)若函數(shù)在上無零點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com