19.某校舉行運動會,其中三級跳遠的成績在8.0米(四舍五入,精確到0.1米)以上的進入決賽,把所得數(shù)據(jù)進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.
(Ⅰ)求進入決賽的人數(shù);
(Ⅱ)若從該校學生(人數(shù)很多)中隨機抽取兩名,記X表示兩人中進入決賽的人數(shù),求X的分布列及數(shù)學期望;
(Ⅲ)經(jīng)過多次測試后發(fā)現(xiàn),甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現(xiàn)甲,乙各跳一次,求甲比乙遠的概率.

分析 (Ⅰ)由頻率分直方圖求出第6小組的頻率,從而求出總?cè)藬?shù),進而得到第4、5、6組成績均進入決賽,由此能求出進入決賽的人數(shù).
(Ⅱ)由題意知X的可能取值為0,1,2,進入決賽的概率為$\frac{36}{50}=\frac{18}{25}$,從而X~$(2,\frac{18}{25})$,由此能求出X的分布列及數(shù)學期望.
(Ⅲ)設甲、乙各跳一次的成績分別為x、y米,則基本事件滿足的區(qū)域為:$\left\{\begin{array}{l}{8≤x≤10}\\{9.5≤y≤10.5}\end{array}\right.$,由此利用幾何概型能求出甲比乙遠的概率.

解答 解:(Ⅰ)第6小組的頻率為1-(0.04+0.10+0.14+0.28+0.30)=0.14,
∴總?cè)藬?shù)為$\frac{7}{0.14}=50$(人).…(2分)
∴第4、5、6組成績均進入決賽,人數(shù)為(0.28+0.30+0.14)×50=36(人)
即進入決賽的人數(shù)為36.…(4分)
(Ⅱ)由題意知X的可能取值為0,1,2,進入決賽的概率為$\frac{36}{50}=\frac{18}{25}$,
∴X~$(2,\frac{18}{25})$,$P({x=0})=C_2^0{(\frac{7}{25})^2}=\frac{49}{625}$,
P(X=1)=${C}_{2}^{1}(\frac{7}{25})(\frac{18}{25})=\frac{252}{625}$,
$P({x=2})=C_2^2{(\frac{18}{25})^2}=\frac{324}{625}$.…(6分)
∴所求分布列為:

X012
P$\frac{49}{625}$$\frac{252}{625}$$\frac{324}{625}$
$EX=2×\frac{18}{25}=\frac{36}{25}$,兩人中進入決賽的人數(shù)的數(shù)學期望為$\frac{36}{25}$.…(8分)
(Ⅲ)設甲、乙各跳一次的成績分別為x、y米,
則基本事件滿足的區(qū)域為:$\left\{\begin{array}{l}{8≤x≤10}\\{9.5≤y≤10.5}\end{array}\right.$,
事件A“甲比乙遠的概率”滿足的區(qū)域為x>y,如圖所示.…(10分)
∴由幾何概型P(A)=$\frac{\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1×2}$=$\frac{1}{16}$.
即甲比乙遠的概率為$\frac{1}{16}$.…(12分)

點評 本題考查頻率分布直方圖的應用,考查離散型隨機變量的分布列及數(shù)學期望的求法,考查概率的求法,是中檔題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={-2,-1,1,2},B={x|lgx≤1},則A∩B=(  )
A.{-2,-1,1,2}B.{-2,-1,1}C.{1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.將1,2,3,4,…正整數(shù)按如圖所示的方式排成三角形數(shù)組,則第10行左數(shù)第10個數(shù)是91.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設i為虛數(shù)單位,則復數(shù)z=$\frac{1+2i}{i}$的虛部為( 。
A.-2B.-iC.iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知正三角形ABC的頂點A,B在拋物線y2=4x上,另一個頂點C(4,0),則這樣的正三角形有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設i為虛數(shù)單位,若復數(shù)$\frac{i}{1+i}$的實部為a,復數(shù)(1+i)2的虛部為b,則復數(shù)z=a-bi在復平面內(nèi)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,a,b,c分別是∠A,∠B,∠C的對邊.若(a+b-c)(a+b+c)=ab,c=$\sqrt{3}$,當ab取得最大值時,S△ABC=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆湖南長沙長郡中學高三上周測十二數(shù)學(理)試卷(解析版) 題型:選擇題

已知是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增,若實數(shù)滿足,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知ABCD是正方形,PD⊥平面ABCD,PD=AD.
(1)求二面角A-PB-D的大;
(2)在線段PB上是否存在一點E,使PC⊥平面ADE?若存在,確定E點的位置,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案