【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時(shí)圓上一點(diǎn)P的位置在,圓在x軸上沿正向滾動(dòng).當(dāng)圓滾動(dòng)到圓心位于時(shí),的坐標(biāo)為________

【答案】

【解析】

設(shè)滾動(dòng)后圓的圓心為C,切點(diǎn)為A,連接CP.過(guò)C作與x軸正方向平行的射線,交圓CB2,1),設(shè)∠BCP=θ,則根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為(1+cosθ1+sinθ),再根據(jù)圓的圓心從(0,1)滾動(dòng)到(1,1),算出,結(jié)合三角函數(shù)的誘導(dǎo)公式,化簡(jiǎn)可得P的坐標(biāo)為,即為向量的坐標(biāo).

設(shè)滾動(dòng)后的圓的圓心為C,切點(diǎn)為,連接CP

過(guò)C作與x軸正方向平行的射線,交圓C,設(shè),

C的方程為,

∴根據(jù)圓的參數(shù)方程,得P的坐標(biāo)為,

∵單位圓的圓心的初始位置在,圓滾動(dòng)到圓心位于,

,可得,

可得,,

代入上面所得的式子,得到P的坐標(biāo)為,

所以的坐標(biāo)是.

故答案為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,摩天輪上的一點(diǎn)時(shí)刻距離地面的高度滿足,已知該摩天輪的半徑為60米,摩天輪轉(zhuǎn)輪中心O距離地面的高度是70米,摩天輪逆時(shí)針做勻速轉(zhuǎn)動(dòng),每6分鐘轉(zhuǎn)一圈,點(diǎn)的起始位置在摩天輪的最低點(diǎn).

1)根據(jù)條件求出y(米)關(guān)于(分鐘)的解析式;

2)在摩天輪從最低點(diǎn)開(kāi)始計(jì)時(shí)轉(zhuǎn)動(dòng)的一圈內(nèi),有多長(zhǎng)時(shí)間點(diǎn)P距離地面不低于100米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】上饒某購(gòu)物中心在開(kāi)業(yè)之后,為了解消費(fèi)者購(gòu)物金額的分布,在當(dāng)月的電腦消費(fèi)小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成5組,分別是,制成如圖所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).

1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再?gòu)闹腥芜x2張,求這2張小票均來(lái)自元區(qū)間的概率;

2)為做好五一勞動(dòng)節(jié)期間的商場(chǎng)促銷活動(dòng),策劃人員設(shè)計(jì)了兩種不同的促銷方案:

方案一:全場(chǎng)商品打8.5折;

方案二:全場(chǎng)購(gòu)物滿200元減20元,滿400元減50元,滿600元減80元,滿800元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析哪種方案優(yōu)惠力度更大,并說(shuō)明理由(直方圖中每個(gè)小組取中間值作為該組數(shù)據(jù)的替代值).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角梯形中,,,,為線段(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn).設(shè),對(duì)于函數(shù),下列描述正確的是(

A.的最大值和無(wú)關(guān)B.的最小值和無(wú)關(guān)

C.的值域和無(wú)關(guān)D.在其定義域上的單調(diào)性和無(wú)關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)、,直線相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線.

Ⅰ)求曲線的方程;

Ⅱ)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線斜率之積為定值,若存在求出坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.

(1)求證:平面平面

(2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),離心率為.

1)求橢圓的方程;

2)直線過(guò)橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,PA⊥平面ABCD,CDADBCAD,.

(Ⅰ)求證:CDPD;

(Ⅱ)求證:BD⊥平面PAB

(Ⅲ)在棱PD上是否存在點(diǎn)M,使CM∥平面PAB,若存在,確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線和圓,給出下列說(shuō)法:①直線和圓不可能相切;②當(dāng)時(shí),直線平分圓的面積;③若直線截圓所得的弦長(zhǎng)最短,則;④對(duì)于任意的實(shí)數(shù),有且只有兩個(gè)的取值,使直線截圓所得的弦長(zhǎng)為.其中正確的說(shuō)法個(gè)數(shù)是(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案