15.已知復(fù)數(shù)z=$\frac{15i}{3+4i}$,則z的虛部為(  )
A.-$\frac{9}{5}$iB.$\frac{9}{5}$iC.-$\frac{9}{5}$D.$\frac{9}{5}$

分析 利用復(fù)數(shù)的運算法則、虛部的定義即可得出.

解答 解:復(fù)數(shù)z=$\frac{15i}{3+4i}$=$\frac{15i(3-4i)}{(3+4i)(3-4i)}$=$\frac{15(3i+4)}{{3}^{2}+{4}^{2}}$=$\frac{12}{5}$+$\frac{9}{5}$i,
則z的虛部為$\frac{9}{5}$.
故選:D.

點評 本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)a=40.1,b=log40.1,c=0.40.2則( 。
A.a>b>cB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項和為Sn,若S5=5,那么2${\;}^{{a}_{1}}$+2${\;}^{{a}_{5}}$的最小值為(  )
A.4B.2$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{x^2},x>0}\end{array}}$,則f(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-lnx+a-1,g(x)=$\frac{x^2}{2}$+ax-xlnx,其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥1時,g(x)的最小值大于$\frac{3}{2}$-lna,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|ax2-3x-4=0,x∈R}.
(1)若A中有兩個元素,求實數(shù)a的取值范圍;
(2)若A中至多有一個元素,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.點(1,1)到直線x-y+1=0的距離是( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,a=5,c=2,S△ABC=4,則b=$\sqrt{17}$或$\sqrt{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=4x2+kx-1在區(qū)間[1,2]上是單調(diào)函數(shù),則實數(shù)k的取值范圍是( 。
A.(-∞,-16]∪[-8,+∞)B.[-16,-8]C.(-∞,-8)∪[-4,+∞)D.[-8,-4]

查看答案和解析>>

同步練習(xí)冊答案