19.在△ABC中,已知角C=$\frac{π}{3}$,邊AC=4,且△ABC的面積為2$\sqrt{3}$,則邊AB=2$\sqrt{3}$.

分析 利用三角形面積公式列出關(guān)系式,把已知面積,AC,以及sinC的值代入求出BC的長(zhǎng),再利用余弦定理求出AB的長(zhǎng)即可.

解答 解:∵在△ABC中,已知角C=$\frac{π}{3}$,邊AC=4,且△ABC的面積為2$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$×4•BCsin$\frac{π}{3}$=2$\sqrt{3}$,即BC=2,
由余弦定理得:AB2=AC2+BC2-2AC•BC•cosC=4+16-8=12,
則AB=2$\sqrt{3}$,
故答案為:2$\sqrt{3}$.

點(diǎn)評(píng) 此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)直線經(jīng)過兩點(diǎn)A(-2,2)與B(3,-1),求直線的點(diǎn)斜式、斜截式和一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{|{{log}_3}(x+1)|,-1<x≤0}\\{tan(\frac{π}{2}x),0<x<1}\end{array}}\right.$,則$f[f(\frac{{\sqrt{3}}}{3}-1)]$=1,若$f(a)<f(\frac{1}{2})$,則實(shí)數(shù)a的取值范圍是-$\frac{2}{3}$<a<$\frac{1}{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.C${\;}_{33}^{1}$+C${\;}_{33}^{2}$+C${\;}_{33}^{3}$+…+C${\;}_{33}^{33}$除以9的余數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AD為BC邊上的高,且AD=BC,b,c分別表示角B,C所對(duì)的邊長(zhǎng),則$\frac{c}$的最大值是(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}+3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$f(x)=\left\{\begin{array}{l}sinx,x≤1\\ \frac{1}{x},x>1\end{array}\right.$,則$\int_{-1}^e{f(x)dx=}$(  )
A.0B.1C.1+2cos1D.1-2cos1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=xlnx
(1)求函數(shù)f(x)的最小值;
(2)設(shè)F(x)=x2-a[x+f′(x)]+2x,討論函數(shù)F(x)的單調(diào)性;
(3)在第二問的基礎(chǔ)上,若方程F(x)=m,(m∈R)有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求證:x1+x2>a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}+5x+6$在區(qū)間[1,3]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則函數(shù)f(x)的圖象只可能是下列各選項(xiàng)中的( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案