分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,求出最優(yōu)解即可得到結(jié)論.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)A時(shí),直線的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{y=x}\\{x-3y+12=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,
即A(6,6),此時(shí)z=2×6+6=18,
故答案為:18.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問(wèn)題的基本方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P甲=P乙 | B. | P甲<P乙 | C. | P甲>P乙 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>3} | B. | {x|1<x<3} | C. | {x|x>1} | D. | {x|x<1或x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
甲 | 乙 | 原料限額 | |
A(噸) | 3 | 2 | 12 |
B(噸) | 1 | 2 | 8 |
A. | $\left\{\begin{array}{l}{3x+2y≤12}\\{x+2y≤8}\\{x≥0,y≥0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{3x+y≤12}\\{2x+2y≤8}\\{x≥0,y≥0}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{3x+2y≤8}\\{x+2y≤12}\\{x≥0,y≥0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{3x+2y≥12}\\{2x+2y≥8}\\{x≥0,y≥0}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com